Timezone: »

 
Poster
Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation
Emily Denton · Wojciech Zaremba · Joan Bruna · Yann LeCun · Rob Fergus

Thu Dec 11 11:00 AM -- 03:00 PM (PST) @ Level 2, room 210D

We present techniques for speeding up the test-time evaluation of large convolutional networks, designed for object recognition tasks. These models deliver impressive accuracy, but each image evaluation requires millions of floating point operations, making their deployment on smartphones and Internet-scale clusters problematic. The computation is dominated by the convolution operations in the lower layers of the model. We exploit the redundancy present within the convolutional filters to derive approximations that significantly reduce the required computation. Using large state-of-the-art models, we demonstrate speedups of convolutional layers on both CPU and GPU by a factor of 2×, while keeping the accuracy within 1% of the original model.

Author Information

Emily Denton (Google)

Emily Denton is a Research Scientist at Google where they examine the societal impacts of AI technology. Their recent research centers on critically examining the norms, values, and work practices that structure the development and use of machine learning datasets. Prior to joining Google, Emily received their PhD in machine learning from the Courant Institute of Mathematical Sciences at New York University, where they focused on unsupervised learning and generative modeling of images and video.

Wojciech Zaremba (OpenAI)
Joan Bruna (NYU)
Yann LeCun (Facebook)

Yann LeCun is VP & Chief AI Scientist at Meta and Silver Professor at NYU affiliated with the Courant Institute of Mathematical Sciences & the Center for Data Science. He was the founding Director of FAIR (Meta's AI Research group) and of the NYU Center for Data Science. He received an Engineering Diploma from ESIEE (Paris) and a PhD from Sorbonne Université. After a postdoc in Toronto he joined AT&T Bell Labs in 1988, and AT&T Labs in 1996 as Head of Image Processing Research. He joined NYU as a professor in 2003 and Facebook in 2013. His interests include AI machine learning, computer perception, robotics and computational neuroscience. He is the recipient of the 2018 ACM Turing Award (with Geoffrey Hinton and Yoshua Bengio) for "conceptual and engineering breakthroughs that have made deep neural networks a critical component of computing", a member of the National Academy of Sciences, the National Academy of Engineering and a Chevalier de la Légion d’Honneur.

Rob Fergus (DeepMind / NYU)

Rob Fergus is an Associate Professor of Computer Science at the Courant Institute of Mathematical Sciences, New York University. He received a Masters in Electrical Engineering with Prof. Pietro Perona at Caltech, before completing a PhD with Prof. Andrew Zisserman at the University of Oxford in 2005. Before coming to NYU, he spent two years as a post-doc in the Computer Science and Artificial Intelligence Lab (CSAIL) at MIT, working with Prof. William Freeman. He has received several awards including a CVPR best paper prize, a Sloan Fellowship & NSF Career award and the IEEE Longuet-Higgins prize.

More from the Same Authors