Timezone: »
A determinantal point process (DPP) is a probabilistic model of set diversity compactly parameterized by a positive semi-definite kernel matrix. To fit a DPP to a given task, we would like to learn the entries of its kernel matrix by maximizing the log-likelihood of the available data. However, log-likelihood is non-convex in the entries of the kernel matrix, and this learning problem is conjectured to be NP-hard. Thus, previous work has instead focused on more restricted convex learning settings: learning only a single weight for each row of the kernel matrix, or learning weights for a linear combination of DPPs with fixed kernel matrices. In this work we propose a novel algorithm for learning the full kernel matrix. By changing the kernel parameterization from matrix entries to eigenvalues and eigenvectors, and then lower-bounding the likelihood in the manner of expectation-maximization algorithms, we obtain an effective optimization procedure. We test our method on a real-world product recommendation task, and achieve relative gains of up to 16.5% in test log-likelihood compared to the naive approach of maximizing likelihood by projected gradient ascent on the entries of the kernel matrix.
Author Information
Jennifer A Gillenwater (University of Pennsylvania)
Alex Kulesza (Google)
Emily Fox (Stanford University)
Ben Taskar (University of Washington)
More from the Same Authors
-
2019 : Emily Fox »
Emily Fox -
2018 : Plenary Talk 4 »
Emily Fox -
2018 Poster: Large-Scale Stochastic Sampling from the Probability Simplex »
Jack Baker · Paul Fearnhead · Emily Fox · Christopher Nemeth -
2016 : Emily Fox. Sparse Graphs via Exchangeable Random Measures. »
Emily Fox -
2016 : Emily Fox : Functional Connectivity in MEG via Graphical Models of Time Series »
Emily Fox -
2015 : Bayesian Time Series: Structured Representations for Scalability »
Emily Fox -
2015 Poster: A Complete Recipe for Stochastic Gradient MCMC »
Yi-An Ma · Tianqi Chen · Emily Fox -
2014 Poster: Stochastic variational inference for hidden Markov models »
Nick Foti · Jason Xu · Dillon Laird · Emily Fox -
2013 Poster: Learning Adaptive Value of Information for Structured Prediction »
David J Weiss · Ben Taskar -
2013 Poster: Approximate Inference in Continuous Determinantal Processes »
Raja Hafiz Affandi · Emily Fox · Ben Taskar -
2013 Spotlight: Approximate Inference in Continuous Determinantal Processes »
Raja Hafiz Affandi · Emily Fox · Ben Taskar -
2013 Session: Oral Session 4 »
Emily Fox -
2012 Poster: Multiresolution Gaussian Processes »
Emily Fox · David B Dunson -
2012 Poster: Effective Split-Merge Monte Carlo Methods for Nonparametric Models of Sequential Data »
Michael Hughes · Emily Fox · Erik Sudderth -
2012 Poster: Near-Optimal MAP Inference for Determinantal Point Processes »
Alex Kulesza · Jennifer A Gillenwater · Ben Taskar -
2012 Oral: Near-Optimal MAP Inference for Determinantal Point Processes »
Alex Kulesza · Jennifer A Gillenwater · Ben Taskar -
2011 Workshop: Bayesian Nonparametric Methods: Hope or Hype? »
Emily Fox · Ryan Adams -
2010 Workshop: Coarse-to-Fine Learning and Inference »
Ben Taskar · David J Weiss · Benjamin J Sapp · Slav Petrov -
2010 Spotlight: Structured Determinantal Point Processes »
Alex Kulesza · Ben Taskar -
2010 Poster: Structured Determinantal Point Processes »
Alex Kulesza · Ben Taskar -
2010 Oral: Semi-Supervised Learning with Adversarially Missing Label Information »
Umar Syed · Ben Taskar -
2010 Session: Spotlights Session 3 »
Ben Taskar -
2010 Session: Oral Session 3 »
Ben Taskar -
2010 Poster: Semi-Supervised Learning with Adversarially Missing Label Information »
Umar Syed · Ben Taskar -
2010 Poster: Sidestepping Intractable Inference with Structured Ensemble Cascades »
David J Weiss · Benjamin J Sapp · Ben Taskar -
2009 Poster: Adaptive Regularization of Weight Vectors »
Yacov Crammer · Alex Kulesza · Mark Dredze -
2009 Poster: Sharing Features among Dynamical Systems with Beta Processes »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2009 Poster: Posterior vs Parameter Sparsity in Latent Variable Models »
Joao V Graca · Kuzman Ganchev · Ben Taskar · Fernando Pereira -
2009 Spotlight: Posterior vs Parameter Sparsity in Latent Variable Models »
Joao V Graca · Kuzman Ganchev · Ben Taskar · Fernando Pereira -
2009 Oral: Sharing Features among Dynamical Systems with Beta Processes »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2009 Spotlight: Adaptive Regularization of Weight Vectors »
Yacov Crammer · Alex Kulesza · Mark Dredze -
2009 Session: Oral Session 6: Theory, Optimization and Games »
Ben Taskar -
2008 Poster: Nonparametric Bayesian Learning of Switching Linear Dynamical Systems »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2008 Spotlight: Nonparametric Bayesian Learning of Switching Linear Dynamical Systems »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2007 Poster: Expectation Maximization, Posterior Constraints, and Statistical Alignment »
Kuzman Ganchev · Joao V Graca · Ben Taskar -
2007 Spotlight: Expectation Maximization, Posterior Constraints, and Statistical Alignment »
Kuzman Ganchev · Joao V Graca · Ben Taskar -
2007 Spotlight: Structured Learning with Approximate Inference »
Alex Kulesza · Fernando Pereira -
2007 Tutorial: Structured Prediction »
Ben Taskar -
2007 Poster: Structured Learning with Approximate Inference »
Alex Kulesza · Fernando Pereira -
2007 Poster: Learning Bounds for Domain Adaptation »
John Blitzer · Yacov Crammer · Alex Kulesza · Fernando Pereira · Jennifer Wortman Vaughan