Timezone: »
Group lasso is widely used to enforce the structural sparsity, which achieves the sparsity at inter-group level. In this paper, we propose a new formulation called ``exclusive group lasso'', which brings out sparsity at intra-group level in the context of feature selection. The proposed exclusive group lasso is applicable on any feature structures, regardless of their overlapping or non-overlapping structures. We give analysis on the properties of exclusive group lasso, and propose an effective iteratively re-weighted algorithm to solve the corresponding optimization problem with rigorous convergence analysis. We show applications of exclusive group lasso for uncorrelated feature selection. Extensive experiments on both synthetic and real-world datasets indicate the good performance of proposed methods.
Author Information
Deguang Kong (Yahoo Research)
Ryohei Fujimaki (NEC Data Science Research Laboratories)
Ji Liu (Kwai Inc.)
Feiping Nie (University of Texas Arlington)
Chris Ding (University of Texas at Arlington)
More from the Same Authors
-
2023 Poster: Joint Feature and Differentiable $ k $-NN Graph Learning using Dirichlet Energy »
Lei Xu · Lei Chen · Rong Wang · Feiping Nie · Xuelong Li -
2023 Poster: Federated Spectral Clustering via Secure Similarity Reconstruction »
Dong Qiao · Chris Ding · Jicong Fan -
2023 Poster: Lovász Principle for Unsupervised Graph Representation Learning »
Ziheng Sun · Chris Ding · Jicong Fan -
2022 Poster: Improving Certified Robustness via Statistical Learning with Logical Reasoning »
Zhuolin Yang · Zhikuan Zhao · Boxin Wang · Jiawei Zhang · Linyi Li · Hengzhi Pei · Bojan Karlaš · Ji Liu · Heng Guo · Ce Zhang · Bo Li -
2021 Poster: ErrorCompensatedX: error compensation for variance reduced algorithms »
Hanlin Tang · Yao Li · Ji Liu · Ming Yan -
2021 Poster: TNASP: A Transformer-based NAS Predictor with a Self-evolution Framework »
Shun Lu · Jixiang Li · Jianchao Tan · Sen Yang · Ji Liu -
2021 Poster: Shifted Chunk Transformer for Spatio-Temporal Representational Learning »
Xuefan Zha · Wentao Zhu · Lv Xun · Sen Yang · Ji Liu -
2020 Poster: Learning Feature Sparse Principal Subspace »
Lai Tian · Feiping Nie · Rong Wang · Xuelong Li -
2020 Poster: Once-for-All Adversarial Training: In-Situ Tradeoff between Robustness and Accuracy for Free »
Haotao Wang · Tianlong Chen · Shupeng Gui · TingKuei Hu · Ji Liu · Zhangyang Wang -
2020 Poster: Efficient Clustering Based On A Unified View Of K-means And Ratio-cut »
Shenfei Pei · Feiping Nie · Rong Wang · Xuelong Li -
2019 Poster: Efficient Smooth Non-Convex Stochastic Compositional Optimization via Stochastic Recursive Gradient Descent »
Wenqing Hu · Chris Junchi Li · Xiangru Lian · Ji Liu · Angela Yuan -
2019 Poster: Global Sparse Momentum SGD for Pruning Very Deep Neural Networks »
Xiaohan Ding · guiguang ding · Xiangxin Zhou · Yuchen Guo · Jungong Han · Ji Liu -
2019 Poster: LIIR: Learning Individual Intrinsic Reward in Multi-Agent Reinforcement Learning »
Yali Du · Lei Han · Meng Fang · Ji Liu · Tianhong Dai · Dacheng Tao -
2019 Poster: Model Compression with Adversarial Robustness: A Unified Optimization Framework »
Shupeng Gui · Haotao Wang · Haichuan Yang · Chen Yu · Zhangyang Wang · Ji Liu -
2018 Poster: Communication Compression for Decentralized Training »
Hanlin Tang · Shaoduo Gan · Ce Zhang · Tong Zhang · Ji Liu -
2018 Poster: Stochastic Primal-Dual Method for Empirical Risk Minimization with O(1) Per-Iteration Complexity »
Conghui Tan · Tong Zhang · Shiqian Ma · Ji Liu -
2018 Poster: Gradient Sparsification for Communication-Efficient Distributed Optimization »
Jianqiao Wangni · Jialei Wang · Ji Liu · Tong Zhang -
2017 Poster: Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent »
Xiangru Lian · Ce Zhang · Huan Zhang · Cho-Jui Hsieh · Wei Zhang · Ji Liu -
2017 Oral: Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent »
Xiangru Lian · Ce Zhang · Huan Zhang · Cho-Jui Hsieh · Wei Zhang · Ji Liu -
2017 Poster: Graph Matching via Multiplicative Update Algorithm »
Bo Jiang · Jin Tang · Chris Ding · Yihong Gong · Bin Luo -
2017 Spotlight: Graph Matching via Multiplicative Update Algorithm »
Bo Jiang · Jin Tang · Chris Ding · Yihong Gong · Bin Luo -
2017 Poster: Learning A Structured Optimal Bipartite Graph for Co-Clustering »
Feiping Nie · Xiaoqian Wang · Cheng Deng · Heng Huang -
2017 Poster: Scalable Model Selection for Belief Networks »
Zhao Song · Yusuke Muraoka · Ryohei Fujimaki · Lawrence Carin -
2016 Poster: Asynchronous Parallel Greedy Coordinate Descent »
Yang You · Xiangru Lian · Ji Liu · Hsiang-Fu Yu · Inderjit Dhillon · James Demmel · Cho-Jui Hsieh -
2016 Poster: Accelerating Stochastic Composition Optimization »
Mengdi Wang · Ji Liu · Ethan Fang -
2016 Poster: Large-Scale Price Optimization via Network Flow »
Shinji Ito · Ryohei Fujimaki -
2016 Oral: Large-Scale Price Optimization via Network Flow »
Shinji Ito · Ryohei Fujimaki -
2016 Poster: A Comprehensive Linear Speedup Analysis for Asynchronous Stochastic Parallel Optimization from Zeroth-Order to First-Order »
Xiangru Lian · Huan Zhang · Cho-Jui Hsieh · Yijun Huang · Ji Liu -
2015 Poster: Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization »
Xiangru Lian · Yijun Huang · Yuncheng Li · Ji Liu -
2015 Spotlight: Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization »
Xiangru Lian · Yijun Huang · Yuncheng Li · Ji Liu -
2014 Poster: Partition-wise Linear Models »
Hidekazu Oiwa · Ryohei Fujimaki -
2013 Poster: Factorized Asymptotic Bayesian Inference for Latent Feature Models »
Kohei Hayashi · Ryohei Fujimaki -
2013 Poster: An Approximate, Efficient LP Solver for LP Rounding »
Srikrishna Sridhar · Stephen Wright · Christopher Re · Ji Liu · Victor Bittorf · Ce Zhang -
2012 Poster: Selective Labeling via Error Bound Minimization »
Quanquan Gu · Tong Zhang · Chris Ding · Jiawei Han -
2012 Poster: Forging The Graphs: A Low Rank and Positive Semidefinite Graph Learning Approach »
Dijun Luo · Chris Ding · Heng Huang -
2012 Poster: High-Order Multi-Task Feature Learning to Identify Longitudinal Phenotypic Markers for Alzheimer Disease Progression Prediction »
Hua Wang · Feiping Nie · Heng Huang · Jingwen Yan · Sungeun Kim · Shannon Risacher · Andrew Saykin · Li Shen -
2012 Poster: Regularized Off-Policy TD-Learning »
Bo Liu · Sridhar Mahadevan · Ji Liu -
2012 Spotlight: Regularized Off-Policy TD-Learning »
Bo Liu · Sridhar Mahadevan · Ji Liu -
2012 Oral: High-Order Multi-Task Feature Learning to Identify Longitudinal Phenotypic Markers for Alzheimer Disease Progression Prediction »
Hua Wang · Feiping Nie · Heng Huang · Jingwen Yan · Sungeun Kim · Shannon Risacher · Andrew Saykin · Li Shen -
2011 Poster: A Maximum Margin Multi-Instance Learning Framework for Image Categorization »
Hua Wang · Heng Huang · Farhad Kamangar · Feiping Nie · Chris Ding -
2010 Poster: Efficient and Robust Feature Selection via Joint ℓ2,1-Norms Minimization »
Feiping Nie · Heng Huang · Xiao Cai · Chris Ding -
2010 Poster: Multi-Stage Dantzig Selector »
Ji Liu · Peter Wonka · Jieping Ye