Timezone: »
We investigate the power of voting among diverse, randomized software agents. With teams of computer Go agents in mind, we develop a novel theoretical model of two-stage noisy voting that builds on recent work in machine learning. This model allows us to reason about a collection of agents with different biases (determined by the first-stage noise models), which, furthermore, apply randomized algorithms to evaluate alternatives and produce votes (captured by the second-stage noise models). We analytically demonstrate that a uniform team, consisting of multiple instances of any single agent, must make a significant number of mistakes, whereas a diverse team converges to perfection as the number of agents grows. Our experiments, which pit teams of computer Go agents against strong agents, provide evidence for the effectiveness of voting when agents are diverse.
Author Information
Albert Jiang (USC)
Leandro Soriano Marcolino (University of Southern California)
Ariel Procaccia (Carnegie Mellon University)
Tuomas Sandholm (CMU, Strategic Machine, Strategy Robot, Optimized Markets)
Nisarg Shah (Carnegie Mellon University)
Milind Tambe (USC)
More from the Same Authors
-
2021 Spotlight: Subgame solving without common knowledge »
Brian Zhang · Tuomas Sandholm -
2021 Spotlight: Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm · Ellen Vitercik -
2023 Poster: Computing Optimal Equilibria and Mechanisms via Learning in Zero-Sum Extensive-Form Games »
Brian Zhang · Gabriele Farina · Ioannis Anagnostides · Federico Cacciamani · Stephen McAleer · Andreas Haupt · Andrea Celli · Nicola Gatti · Vincent Conitzer · Tuomas Sandholm -
2023 Poster: On the Convergence and Welfare of Learning Algorithms in Smooth Games »
Ioannis Anagnostides · Tuomas Sandholm -
2023 Poster: Team-PSRO for Learning Approximate TMECor in Large Team Games via Cooperative Reinforcement Learning »
Stephen McAleer · Gabriele Farina · Gaoyue Zhou · Mingzhi Wang · Yaodong Yang · Tuomas Sandholm -
2023 Poster: Bicriteria Multidimensional Mechanism Design with Side Information »
Siddharth Prasad · Maria-Florina Balcan · Tuomas Sandholm -
2023 Poster: On the Convergence of No-Regret Learning Dynamics in Time-Varying Games »
Ioannis Anagnostides · Ioannis Panageas · Gabriele Farina · Tuomas Sandholm -
2022 : ESCHER: ESCHEWING IMPORTANCE SAMPLING IN GAMES BY COMPUTING A HISTORY VALUE FUNCTION TO ESTIMATE REGRET »
Stephen McAleer · Gabriele Farina · Marc Lanctot · Tuomas Sandholm -
2022 Poster: Structural Analysis of Branch-and-Cut and the Learnability of Gomory Mixed Integer Cuts »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm · Ellen Vitercik -
2022 Poster: Uncoupled Learning Dynamics with $O(\log T)$ Swap Regret in Multiplayer Games »
Ioannis Anagnostides · Gabriele Farina · Christian Kroer · Chung-Wei Lee · Haipeng Luo · Tuomas Sandholm -
2022 Poster: Maximizing Revenue under Market Shrinkage and Market Uncertainty »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm -
2022 Poster: Polynomial-Time Optimal Equilibria with a Mediator in Extensive-Form Games »
Brian Zhang · Tuomas Sandholm -
2022 Poster: Optimistic Mirror Descent Either Converges to Nash or to Strong Coarse Correlated Equilibria in Bimatrix Games »
Ioannis Anagnostides · Gabriele Farina · Ioannis Panageas · Tuomas Sandholm -
2022 Poster: Subgame Solving in Adversarial Team Games »
Brian Zhang · Luca Carminati · Federico Cacciamani · Gabriele Farina · Pierriccardo Olivieri · Nicola Gatti · Tuomas Sandholm -
2022 Poster: Near-Optimal No-Regret Learning Dynamics for General Convex Games »
Gabriele Farina · Ioannis Anagnostides · Haipeng Luo · Chung-Wei Lee · Christian Kroer · Tuomas Sandholm -
2021 Poster: Subgame solving without common knowledge »
Brian Zhang · Tuomas Sandholm -
2021 Poster: Equilibrium Refinement for the Age of Machines: The One-Sided Quasi-Perfect Equilibrium »
Gabriele Farina · Tuomas Sandholm -
2021 Poster: Fair Sortition Made Transparent »
Bailey Flanigan · Gregory Kehne · Ariel Procaccia -
2021 Poster: Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm · Ellen Vitercik -
2020 Poster: Small Nash Equilibrium Certificates in Very Large Games »
Brian Zhang · Tuomas Sandholm -
2020 Poster: Polynomial-Time Computation of Optimal Correlated Equilibria in Two-Player Extensive-Form Games with Public Chance Moves and Beyond »
Gabriele Farina · Tuomas Sandholm -
2020 Poster: Improving Policy-Constrained Kidney Exchange via Pre-Screening »
Duncan McElfresh · Michael Curry · Tuomas Sandholm · John Dickerson -
2019 : Putting Ethical AI to the Vote »
Ariel Procaccia -
2019 Poster: End to end learning and optimization on graphs »
Bryan Wilder · Eric Ewing · Bistra Dilkina · Milind Tambe -
2019 Poster: Correlation in Extensive-Form Games: Saddle-Point Formulation and Benchmarks »
Gabriele Farina · Chun Kai Ling · Fei Fang · Tuomas Sandholm -
2019 Poster: Exploring Algorithmic Fairness in Robust Graph Covering Problems »
Aida Rahmattalabi · Phebe Vayanos · Anthony Fulginiti · Eric Rice · Bryan Wilder · Amulya Yadav · Milind Tambe -
2019 Spotlight: Paradoxes in Fair Machine Learning »
Paul Gölz · Anson Kahng · Ariel Procaccia -
2019 Poster: Efficient Regret Minimization Algorithm for Extensive-Form Correlated Equilibrium »
Gabriele Farina · Chun Kai Ling · Fei Fang · Tuomas Sandholm -
2019 Spotlight: Efficient Regret Minimization Algorithm for Extensive-Form Correlated Equilibrium »
Gabriele Farina · Chun Kai Ling · Fei Fang · Tuomas Sandholm -
2019 Oral: Efficient and Thrifty Voting by Any Means Necessary »
Debmalya Mandal · Ariel Procaccia · Nisarg Shah · David Woodruff -
2019 Poster: Optimistic Regret Minimization for Extensive-Form Games via Dilated Distance-Generating Functions »
Gabriele Farina · Christian Kroer · Tuomas Sandholm -
2018 : The role of civil society in the age of AI: Beyond buzzwords »
Kathleen Siminyu · Milind Tambe · Michael Skirpan · Dongwoo Kim -
2018 Poster: A Unified Framework for Extensive-Form Game Abstraction with Bounds »
Christian Kroer · Tuomas Sandholm -
2018 Poster: Depth-Limited Solving for Imperfect-Information Games »
Noam Brown · Tuomas Sandholm · Brandon Amos -
2018 Poster: Solving Large Sequential Games with the Excessive Gap Technique »
Christian Kroer · Gabriele Farina · Tuomas Sandholm -
2018 Poster: Practical exact algorithm for trembling-hand equilibrium refinements in games »
Gabriele Farina · Nicola Gatti · Tuomas Sandholm -
2018 Spotlight: Solving Large Sequential Games with the Excessive Gap Technique »
Christian Kroer · Gabriele Farina · Tuomas Sandholm -
2018 Poster: Ex ante coordination and collusion in zero-sum multi-player extensive-form games »
Gabriele Farina · Andrea Celli · Nicola Gatti · Tuomas Sandholm -
2017 Poster: Collaborative PAC Learning »
Avrim Blum · Nika Haghtalab · Ariel Procaccia · Mingda Qiao -
2017 Demonstration: Libratus: Beating Top Humans in No-Limit Poker »
Noam Brown · Tuomas Sandholm -
2017 Poster: Safe and Nested Subgame Solving for Imperfect-Information Games »
Noam Brown · Tuomas Sandholm -
2017 Oral: Safe and Nested Subgame Solving for Imperfect-Information Games »
Noam Brown · Tuomas Sandholm -
2016 Poster: Sample Complexity of Automated Mechanism Design »
Maria-Florina Balcan · Tuomas Sandholm · Ellen Vitercik -
2015 Poster: Is Approval Voting Optimal Given Approval Votes? »
Ariel Procaccia · Nisarg Shah -
2015 Poster: Regret-Based Pruning in Extensive-Form Games »
Noam Brown · Tuomas Sandholm -
2015 Demonstration: Claudico: The World's Strongest No-Limit Texas Hold'em Poker AI »
Noam Brown · Tuomas Sandholm -
2014 Poster: Learning Optimal Commitment to Overcome Insecurity »
Avrim Blum · Nika Haghtalab · Ariel Procaccia