Timezone: »
Poster
Communication-Efficient Distributed Dual Coordinate Ascent
Martin Jaggi · Virginia Smith · Martin Takac · Jonathan Terhorst · Sanjay Krishnan · Thomas Hofmann · Michael Jordan
Communication remains the most significant bottleneck in the performance of distributed optimization algorithms for large-scale machine learning. In this paper, we propose a communication-efficient framework, COCOA, that uses local computation in a primal-dual setting to dramatically reduce the amount of necessary communication. We provide a strong convergence rate analysis for this class of algorithms, as well as experiments on real-world distributed datasets with implementations in Spark. In our experiments, we find that as compared to state-of-the-art mini-batch versions of SGD and SDCA algorithms, COCOA converges to the same .001-accurate solution quality on average 25× as quickly.
Author Information
Martin Jaggi (EPFL)
Virginia Smith (UC Berkeley)
Martin Takac (Mohamed bin Zayed University of Artificial Intelligence (MBZUAI))
Jonathan Terhorst (UC Berkeley)
Sanjay Krishnan (University of California Berkeley)
Thomas Hofmann (ETH Zurich)
Michael Jordan (UC Berkeley)
More from the Same Authors
-
2021 Spotlight: Learning Equilibria in Matching Markets from Bandit Feedback »
Meena Jagadeesan · Alexander Wei · Yixin Wang · Michael Jordan · Jacob Steinhardt -
2021 Spotlight: Robust Learning of Optimal Auctions »
Wenshuo Guo · Michael Jordan · Emmanouil Zampetakis -
2021 Spotlight: Precise characterization of the prior predictive distribution of deep ReLU networks »
Lorenzo Noci · Gregor Bachmann · Kevin Roth · Sebastian Nowozin · Thomas Hofmann -
2021 : Optimization with Adaptive Step Size Selection from a Dynamical Systems Perspective »
Neha Wadia · Michael Jordan · Michael Muehlebach -
2021 : Optimization with Adaptive Step Size Selection from a Dynamical Systems Perspective »
Neha Wadia · Michael Jordan · Michael Muehlebach -
2021 : Random-reshuffled SARAH does not need a full gradient computations »
Aleksandr Beznosikov · Martin Takac -
2021 : Last-Iterate Convergence of Saddle Point Optimizers via High-Resolution Differential Equations »
Tatjana Chavdarova · Michael Jordan · Emmanouil Zampetakis -
2021 : On the convergence of stochastic extragradient for bilinear games using restarted iteration averaging »
Chris Junchi Li · Yaodong Yu · Nicolas Loizou · Gauthier Gidel · Yi Ma · Nicolas Le Roux perso · Michael Jordan -
2021 : On the convergence of stochastic extragradient for bilinear games using restarted iteration averaging »
Chris Junchi Li · Yaodong Yu · Nicolas Loizou · Gauthier Gidel · Yi Ma · Nicolas Le Roux perso · Michael Jordan -
2021 : GPU-Podracer: Scalable and Elastic Library for Cloud-Native Deep Reinforcement Learning »
Xiao-Yang Liu · Zhuoran Yang · Zhaoran Wang · Anwar Walid · Jian Guo · Michael Jordan -
2021 : Learning Two-Player Mixture Markov Games: Kernel Function Approximation and Correlated Equilibrium »
Chris Junchi Li · Dongruo Zhou · Quanquan Gu · Michael Jordan -
2021 : Desiderata for Representation Learning: A Causal Perspective »
Yixin Wang · Michael Jordan -
2022 Poster: Rank Diminishing in Deep Neural Networks »
Ruili Feng · Kecheng Zheng · Yukun Huang · Deli Zhao · Michael Jordan · Zheng-Jun Zha -
2022 : Cosmology from Galaxy Redshift Surveys with PointNet »
Sotiris Anagnostidis · Arne Thomsen · Alexandre Refregier · Tomasz Kacprzak · Luca Biggio · Thomas Hofmann · Tilman Tröster -
2022 : Nesterov Meets Optimism: Rate-Optimal Optimistic-Gradient-Based Method for Stochastic Bilinearly-Coupled Minimax Optimization »
Chris Junchi Li · Angela Yuan · Gauthier Gidel · Michael Jordan -
2022 : Solving Constrained Variational Inequalities via a First-order Interior Point-based Method »
Tong Yang · Michael Jordan · Tatjana Chavdarova -
2022 : Perseus: A Simple and Optimal High-Order Method for Variational Inequalities »
Tianyi Lin · Michael Jordan -
2022 : Effects of momentum scaling for SGD »
Dmitry A. Pasechnyuk · Alexander Gasnikov · Martin Takac -
2022 : Using quadratic equations for overparametrized models »
Shuang Li · William Swartworth · Martin Takac · Deanna Needell · Robert Gower -
2022 : FLECS-CGD: A Federated Learning Second-Order Framework via Compression and Sketching with Compressed Gradient Differences »
Artem Agafonov · Brahim Erraji · Martin Takac -
2022 : Cubic Regularized Quasi-Newton Methods »
Dmitry Kamzolov · Klea Ziu · Artem Agafonov · Martin Takac -
2022 : PSPS: Preconditioned Stochastic Polyak Step-size method for badly scaled data »
Farshed Abdukhakimov · Chulu Xiang · Dmitry Kamzolov · Robert Gower · Martin Takac -
2022 : Towards Provably Personalized Federated Learning via Threshold-Clustering of Similar Clients »
Mariel A Werner · Lie He · Sai Praneeth Karimireddy · Michael Jordan · Martin Jaggi -
2022 : Valid Inference after Causal Discovery »
Paula Gradu · Tijana Zrnic · Yixin Wang · Michael Jordan -
2022 : Achieving a Better Stability-Plasticity Trade-off via Auxiliary Networks in Continual Learning »
Sanghwan Kim · Lorenzo Noci · Antonio Orvieto · Thomas Hofmann -
2022 : A General Framework for Sample-Efficient Function Approximation in Reinforcement Learning »
Zixiang Chen · Chris Junchi Li · Angela Yuan · Quanquan Gu · Michael Jordan -
2023 Poster: A Unifying Perspective on Multi-Calibration: Game Dynamics for Multi-Objective Learning »
Nika Haghtalab · Michael Jordan · Eric Zhao -
2023 Poster: Dynamic Context Pruning for Efficient and Interpretable Autoregressive Transformers »
Sotiris Anagnostidis · Dario Pavllo · Luca Biggio · Lorenzo Noci · Aurelien Lucchi · Thomas Hofmann -
2023 Poster: Class-conditional conformal prediction with many classes »
Tiffany Ding · Anastasios Angelopoulos · Stephen Bates · Michael Jordan · Ryan Tibshirani -
2023 Poster: On Learning Necessary and Sufficient Causal Graphs »
Hengrui Cai · Yixin Wang · Michael Jordan · Rui Song -
2023 Poster: Towards Optimal Caching and Model Selection for Large Model Inference »
Banghua Zhu · Ying Sheng · Lianmin Zheng · Clark Barrett · Michael Jordan · Jiantao Jiao -
2023 Poster: Doubly-Robust Self-Training »
Banghua Zhu · Mingyu Ding · Philip Jacobson · Ming Wu · Wei Zhan · Michael Jordan · Jiantao Jiao -
2023 Poster: Optimal Extragradient-Based Algorithms for Stochastic Variational Inequalities with Separable Structure »
Angela Yuan · Chris Junchi Li · Gauthier Gidel · Michael Jordan · Quanquan Gu · Simon Du -
2023 Poster: Similarity, Compression and Local Steps: Three Pillars of Efficient Communications for Distributed Variational Inequalities »
Aleksandr Beznosikov · Martin Takac · Alexander Gasnikov -
2023 Poster: Scaling MLPs: A Tale of Inductive Bias »
Gregor Bachmann · Sotiris Anagnostidis · Thomas Hofmann -
2023 Poster: Shaped Attention Mechanism in the Infinite Depth-and-Width Limit at Initialization »
Lorenzo Noci · Chuning Li · Mufan Li · Bobby He · Thomas Hofmann · Chris Maddison · Dan Roy -
2023 Poster: Improved Bayes Risk Can Yield Reduced Social Welfare Under Competition »
Meena Jagadeesan · Michael Jordan · Jacob Steinhardt · Nika Haghtalab -
2023 Poster: Byzantine-Tolerant Methods for Distributed Variational Inequalities »
Nazarii Tupitsa · Eduard Gorbunov · Abdulla Jasem Almansoori · Yanlin Wu · Martin Takac · Karthik Nandakumar · Samuel Horváth -
2022 : Mechanisms that Incentivize Data Sharing in Federated Learning »
Sai Praneeth Karimireddy · Wenshuo Guo · Michael Jordan -
2022 Workshop: Order up! The Benefits of Higher-Order Optimization in Machine Learning »
Albert Berahas · Jelena Diakonikolas · Jarad Forristal · Brandon Reese · Martin Takac · Yan Xu -
2022 Poster: Off-Policy Evaluation with Policy-Dependent Optimization Response »
Wenshuo Guo · Michael Jordan · Angela Zhou -
2022 Poster: First-Order Algorithms for Min-Max Optimization in Geodesic Metric Spaces »
Michael Jordan · Tianyi Lin · Emmanouil-Vasileios Vlatakis-Gkaragkounis -
2022 Poster: Learning Two-Player Markov Games: Neural Function Approximation and Correlated Equilibrium »
Chris Junchi Li · Dongruo Zhou · Quanquan Gu · Michael Jordan -
2022 Poster: Learn to Match with No Regret: Reinforcement Learning in Markov Matching Markets »
Yifei Min · Tianhao Wang · Ruitu Xu · Zhaoran Wang · Michael Jordan · Zhuoran Yang -
2022 Poster: Robust Calibration with Multi-domain Temperature Scaling »
Yaodong Yu · Stephen Bates · Yi Ma · Michael Jordan -
2022 Poster: On-Demand Sampling: Learning Optimally from Multiple Distributions »
Nika Haghtalab · Michael Jordan · Eric Zhao -
2022 Poster: A Damped Newton Method Achieves Global $\mathcal O \left(\frac{1}{k^2}\right)$ and Local Quadratic Convergence Rate »
Slavomír Hanzely · Dmitry Kamzolov · Dmitry Pasechnyuk · Alexander Gasnikov · Peter Richtarik · Martin Takac -
2022 Poster: Gradient-Free Methods for Deterministic and Stochastic Nonsmooth Nonconvex Optimization »
Tianyi Lin · Zeyu Zheng · Michael Jordan -
2022 Poster: OpenFilter: A Framework to Democratize Research Access to Social Media AR Filters »
Piera Riccio · Bill Psomas · Francesco Galati · Francisco Escolano · Thomas Hofmann · Nuria Oliver -
2022 Poster: TCT: Convexifying Federated Learning using Bootstrapped Neural Tangent Kernels »
Yaodong Yu · Alexander Wei · Sai Praneeth Karimireddy · Yi Ma · Michael Jordan -
2022 Poster: Empirical Gateaux Derivatives for Causal Inference »
Michael Jordan · Yixin Wang · Angela Zhou -
2021 Workshop: OPT 2021: Optimization for Machine Learning »
Courtney Paquette · Quanquan Gu · Oliver Hinder · Katya Scheinberg · Sebastian Stich · Martin Takac -
2021 Poster: Robust Learning of Optimal Auctions »
Wenshuo Guo · Michael Jordan · Emmanouil Zampetakis -
2021 Poster: Learning in Multi-Stage Decentralized Matching Markets »
Xiaowu Dai · Michael Jordan -
2021 Poster: Analytic Insights into Structure and Rank of Neural Network Hessian Maps »
Sidak Pal Singh · Gregor Bachmann · Thomas Hofmann -
2021 Poster: Who Leads and Who Follows in Strategic Classification? »
Tijana Zrnic · Eric Mazumdar · Shankar Sastry · Michael Jordan -
2021 Poster: Test-time Collective Prediction »
Celestine Mendler-Dünner · Wenshuo Guo · Stephen Bates · Michael Jordan -
2021 Poster: On the Theory of Reinforcement Learning with Once-per-Episode Feedback »
Niladri Chatterji · Aldo Pacchiano · Peter Bartlett · Michael Jordan -
2021 Poster: Wasserstein Flow Meets Replicator Dynamics: A Mean-Field Analysis of Representation Learning in Actor-Critic »
Yufeng Zhang · Siyu Chen · Zhuoran Yang · Michael Jordan · Zhaoran Wang -
2021 Poster: Precise characterization of the prior predictive distribution of deep ReLU networks »
Lorenzo Noci · Gregor Bachmann · Kevin Roth · Sebastian Nowozin · Thomas Hofmann -
2021 Poster: Tactical Optimism and Pessimism for Deep Reinforcement Learning »
Ted Moskovitz · Jack Parker-Holder · Aldo Pacchiano · Michael Arbel · Michael Jordan -
2021 Poster: Disentangling the Roles of Curation, Data-Augmentation and the Prior in the Cold Posterior Effect »
Lorenzo Noci · Kevin Roth · Gregor Bachmann · Sebastian Nowozin · Thomas Hofmann -
2021 Poster: Learning Equilibria in Matching Markets from Bandit Feedback »
Meena Jagadeesan · Alexander Wei · Yixin Wang · Michael Jordan · Jacob Steinhardt -
2021 Poster: On Component Interactions in Two-Stage Recommender Systems »
Jiri Hron · Karl Krauth · Michael Jordan · Niki Kilbertus -
2020 : Contributed Talk 6: Do Offline Metrics Predict Online Performance in Recommender Systems? »
Karl Krauth · Sarah Dean · Wenshuo Guo · Benjamin Recht · Michael Jordan -
2020 : Closing remarks »
Quanquan Gu · Courtney Paquette · Mark Schmidt · Sebastian Stich · Martin Takac -
2020 : Live Q&A with Suvrit Sra (Zoom) »
Martin Takac -
2020 : Intro to Invited Speaker 5 »
Martin Takac -
2020 : Contributed talks in Session 2 (Zoom) »
Martin Takac · Samuel Horváth · Guan-Horng Liu · Nicolas Loizou · Sharan Vaswani -
2020 : Live Q&A with Donald Goldfarb (Zoom) »
Martin Takac -
2020 : Live Q&A with Andreas Krause (Zoom) »
Martin Takac -
2020 : Welcome remarks to Session 2 »
Martin Takac -
2020 Workshop: OPT2020: Optimization for Machine Learning »
Courtney Paquette · Mark Schmidt · Sebastian Stich · Quanquan Gu · Martin Takac -
2020 : Welcome event (gather.town) »
Quanquan Gu · Courtney Paquette · Mark Schmidt · Sebastian Stich · Martin Takac -
2020 Poster: Projection Robust Wasserstein Distance and Riemannian Optimization »
Tianyi Lin · Chenyou Fan · Nhat Ho · Marco Cuturi · Michael Jordan -
2020 Poster: Fixed-Support Wasserstein Barycenters: Computational Hardness and Fast Algorithm »
Tianyi Lin · Nhat Ho · Xi Chen · Marco Cuturi · Michael Jordan -
2020 Spotlight: Projection Robust Wasserstein Distance and Riemannian Optimization »
Tianyi Lin · Chenyou Fan · Nhat Ho · Marco Cuturi · Michael Jordan -
2020 Poster: Decision-Making with Auto-Encoding Variational Bayes »
Romain Lopez · Pierre Boyeau · Nir Yosef · Michael Jordan · Jeffrey Regier -
2020 Poster: Batch normalization provably avoids ranks collapse for randomly initialised deep networks »
Hadi Daneshmand · Jonas Kohler · Francis Bach · Thomas Hofmann · Aurelien Lucchi -
2020 Poster: Transferable Calibration with Lower Bias and Variance in Domain Adaptation »
Ximei Wang · Mingsheng Long · Jianmin Wang · Michael Jordan -
2020 Poster: Adversarial Training is a Form of Data-dependent Operator Norm Regularization »
Kevin Roth · Yannic Kilcher · Thomas Hofmann -
2020 Spotlight: Adversarial Training is a Form of Data-dependent Operator Norm Regularization »
Kevin Roth · Yannic Kilcher · Thomas Hofmann -
2020 Poster: Robust Optimization for Fairness with Noisy Protected Groups »
Serena Wang · Wenshuo Guo · Harikrishna Narasimhan · Andrew Cotter · Maya Gupta · Michael Jordan -
2020 Poster: On the Theory of Transfer Learning: The Importance of Task Diversity »
Nilesh Tripuraneni · Michael Jordan · Chi Jin -
2020 Poster: Convolutional Generation of Textured 3D Meshes »
Dario Pavllo · Graham Spinks · Thomas Hofmann · Marie-Francine Moens · Aurelien Lucchi -
2020 Oral: Convolutional Generation of Textured 3D Meshes »
Dario Pavllo · Graham Spinks · Thomas Hofmann · Marie-Francine Moens · Aurelien Lucchi -
2020 Poster: On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces »
Zhuoran Yang · Chi Jin · Zhaoran Wang · Mengdi Wang · Michael Jordan -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2019 : Poster Session »
Eduard Gorbunov · Alexandre d'Aspremont · Lingxiao Wang · Liwei Wang · Boris Ginsburg · Alessio Quaglino · Camille Castera · Saurabh Adya · Diego Granziol · Rudrajit Das · Raghu Bollapragada · Fabian Pedregosa · Martin Takac · Majid Jahani · Sai Praneeth Karimireddy · Hilal Asi · Balint Daroczy · Leonard Adolphs · Aditya Rawal · Nicolas Brandt · Minhan Li · Giuseppe Ughi · Orlando Romero · Ivan Skorokhodov · Damien Scieur · Kiwook Bae · Konstantin Mishchenko · Rohan Anil · Vatsal Sharan · Aditya Balu · Chao Chen · Zhewei Yao · Tolga Ergen · Paul Grigas · Chris Junchi Li · Jimmy Ba · Stephen J Roberts · Sharan Vaswani · Armin Eftekhari · Chhavi Sharma -
2019 Poster: Transferable Normalization: Towards Improving Transferability of Deep Neural Networks »
Ximei Wang · Ying Jin · Mingsheng Long · Jianmin Wang · Michael Jordan -
2019 Poster: A Domain Agnostic Measure for Monitoring and Evaluating GANs »
Paulina Grnarova · Kfir Y. Levy · Aurelien Lucchi · Nathanael Perraudin · Ian Goodfellow · Thomas Hofmann · Andreas Krause -
2019 Poster: Acceleration via Symplectic Discretization of High-Resolution Differential Equations »
Bin Shi · Simon Du · Weijie Su · Michael Jordan -
2018 Poster: Hyperbolic Neural Networks »
Octavian Ganea · Gary Becigneul · Thomas Hofmann -
2018 Poster: Gen-Oja: Simple & Efficient Algorithm for Streaming Generalized Eigenvector Computation »
Kush Bhatia · Aldo Pacchiano · Nicolas Flammarion · Peter Bartlett · Michael Jordan -
2018 Spotlight: Hyperbolic Neural Networks »
Octavian Ganea · Gary Becigneul · Thomas Hofmann -
2018 Poster: Deep State Space Models for Unconditional Word Generation »
Florian Schmidt · Thomas Hofmann -
2018 Poster: Theoretical guarantees for EM under misspecified Gaussian mixture models »
Raaz Dwivedi · nhật Hồ · Koulik Khamaru · Martin Wainwright · Michael Jordan -
2018 Poster: Stochastic Cubic Regularization for Fast Nonconvex Optimization »
Nilesh Tripuraneni · Mitchell Stern · Chi Jin · Jeffrey Regier · Michael Jordan -
2018 Poster: On the Local Minima of the Empirical Risk »
Chi Jin · Lydia T. Liu · Rong Ge · Michael Jordan -
2018 Poster: Reinforcement Learning for Solving the Vehicle Routing Problem »
MohammadReza Nazari · Afshin Oroojlooy · Lawrence Snyder · Martin Takac -
2018 Spotlight: On the Local Minima of the Empirical Risk »
Chi Jin · Lydia T. Liu · Rong Ge · Michael Jordan -
2018 Oral: Stochastic Cubic Regularization for Fast Nonconvex Optimization »
Nilesh Tripuraneni · Mitchell Stern · Chi Jin · Jeffrey Regier · Michael Jordan -
2018 Poster: Is Q-Learning Provably Efficient? »
Chi Jin · Zeyuan Allen-Zhu · Sebastien Bubeck · Michael Jordan -
2018 Poster: Information Constraints on Auto-Encoding Variational Bayes »
Romain Lopez · Jeffrey Regier · Michael Jordan · Nir Yosef -
2018 Poster: Conditional Adversarial Domain Adaptation »
Mingsheng Long · ZHANGJIE CAO · Jianmin Wang · Michael Jordan -
2018 Poster: Generalized Zero-Shot Learning with Deep Calibration Network »
Shichen Liu · Mingsheng Long · Jianmin Wang · Michael Jordan -
2017 Poster: Fast Black-box Variational Inference through Stochastic Trust-Region Optimization »
Jeffrey Regier · Michael Jordan · Jon McAuliffe -
2017 Poster: Online control of the false discovery rate with decaying memory »
Aaditya Ramdas · Fanny Yang · Martin Wainwright · Michael Jordan -
2017 Spotlight: Fast Black-box Variational Inference through Stochastic Trust-Region Optimization »
Jeffrey Regier · Michael Jordan · Jon McAuliffe -
2017 Oral: Online control of the false discovery rate with decaying memory »
Aaditya Ramdas · Fanny Yang · Martin Wainwright · Michael Jordan -
2017 Poster: Gradient Descent Can Take Exponential Time to Escape Saddle Points »
Simon Du · Chi Jin · Jason D Lee · Michael Jordan · Aarti Singh · Barnabas Poczos -
2017 Spotlight: Gradient Descent Can Take Exponential Time to Escape Saddle Points »
Simon Du · Chi Jin · Jason D Lee · Michael Jordan · Aarti Singh · Barnabas Poczos -
2017 Poster: Stabilizing Training of Generative Adversarial Networks through Regularization »
Kevin Roth · Aurelien Lucchi · Sebastian Nowozin · Thomas Hofmann -
2017 Poster: Non-convex Finite-Sum Optimization Via SCSG Methods »
Lihua Lei · Cheng Ju · Jianbo Chen · Michael Jordan -
2017 Poster: Kernel Feature Selection via Conditional Covariance Minimization »
Jianbo Chen · Mitchell Stern · Martin J Wainwright · Michael Jordan -
2016 Workshop: Advances in Approximate Bayesian Inference »
Tamara Broderick · Stephan Mandt · James McInerney · Dustin Tran · David Blei · Kevin Murphy · Andrew Gelman · Michael I Jordan -
2016 Poster: Cyclades: Conflict-free Asynchronous Machine Learning »
Xinghao Pan · Maximilian Lam · Stephen Tu · Dimitris Papailiopoulos · Ce Zhang · Michael Jordan · Kannan Ramchandran · Christopher Ré · Benjamin Recht -
2016 Poster: Unsupervised Domain Adaptation with Residual Transfer Networks »
Mingsheng Long · Han Zhu · Jianmin Wang · Michael Jordan -
2016 Poster: Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy »
Aryan Mokhtari · Hadi Daneshmand · Aurelien Lucchi · Thomas Hofmann · Alejandro Ribeiro -
2016 Poster: Local Maxima in the Likelihood of Gaussian Mixture Models: Structural Results and Algorithmic Consequences »
Chi Jin · Yuchen Zhang · Sivaraman Balakrishnan · Martin J Wainwright · Michael Jordan -
2016 Poster: A Multi-Batch L-BFGS Method for Machine Learning »
Albert Berahas · Jorge Nocedal · Martin Takac -
2015 Poster: Variational Consensus Monte Carlo »
Maxim Rabinovich · Elaine Angelino · Michael Jordan -
2015 Poster: Variance Reduced Stochastic Gradient Descent with Neighbors »
Thomas Hofmann · Aurelien Lucchi · Simon Lacoste-Julien · Brian McWilliams -
2015 Poster: On the Accuracy of Self-Normalized Log-Linear Models »
Jacob Andreas · Maxim Rabinovich · Michael Jordan · Dan Klein -
2015 Poster: Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes »
Ryan Giordano · Tamara Broderick · Michael Jordan -
2015 Spotlight: Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes »
Ryan Giordano · Tamara Broderick · Michael Jordan -
2014 Workshop: Advances in Variational Inference »
David Blei · Shakir Mohamed · Michael Jordan · Charles Blundell · Tamara Broderick · Matthew D. Hoffman -
2014 Workshop: OPT2014: Optimization for Machine Learning »
Zaid Harchaoui · Suvrit Sra · Alekh Agarwal · Martin Jaggi · Miro Dudik · Aaditya Ramdas · Jean Lasserre · Yoshua Bengio · Amir Beck -
2014 Poster: Spectral Methods meet EM: A Provably Optimal Algorithm for Crowdsourcing »
Yuchen Zhang · Xi Chen · Denny Zhou · Michael Jordan -
2014 Poster: Parallel Double Greedy Submodular Maximization »
Xinghao Pan · Stefanie Jegelka · Joseph Gonzalez · Joseph K Bradley · Michael Jordan -
2014 Spotlight: Spectral Methods meet EM: A Provably Optimal Algorithm for Crowdsourcing »
Yuchen Zhang · Xi Chen · Denny Zhou · Michael Jordan -
2014 Poster: On the Convergence Rate of Decomposable Submodular Function Minimization »
Robert Nishihara · Stefanie Jegelka · Michael Jordan -
2013 Workshop: Greedy Algorithms, Frank-Wolfe and Friends - A modern perspective »
Martin Jaggi · Zaid Harchaoui · Federico Pierucci -
2013 Workshop: Big Learning : Advances in Algorithms and Data Management »
Xinghao Pan · Haijie Gu · Joseph Gonzalez · Sameer Singh · Yucheng Low · Joseph Hellerstein · Derek G Murray · Raghu Ramakrishnan · Michael Jordan · Christopher Ré -
2013 Workshop: Discrete Optimization in Machine Learning: Connecting Theory and Practice »
Stefanie Jegelka · Andreas Krause · Pradeep Ravikumar · Kazuo Murota · Jeffrey A Bilmes · Yisong Yue · Michael Jordan -
2013 Session: Oral Session 10 »
Michael Jordan -
2013 Poster: A Comparative Framework for Preconditioned Lasso Algorithms »
Fabian L Wauthier · Nebojsa Jojic · Michael Jordan -
2013 Poster: Information-theoretic lower bounds for distributed statistical estimation with communication constraints »
Yuchen Zhang · John Duchi · Michael Jordan · Martin J Wainwright -
2013 Oral: Information-theoretic lower bounds for distributed statistical estimation with communication constraints »
Yuchen Zhang · John Duchi · Michael Jordan · Martin J Wainwright -
2013 Poster: Optimistic Concurrency Control for Distributed Unsupervised Learning »
Xinghao Pan · Joseph Gonzalez · Stefanie Jegelka · Tamara Broderick · Michael Jordan -
2013 Poster: Local Privacy and Minimax Bounds: Sharp Rates for Probability Estimation »
John Duchi · Martin J Wainwright · Michael Jordan -
2013 Poster: Streaming Variational Bayes »
Tamara Broderick · Nicholas Boyd · Andre Wibisono · Ashia C Wilson · Michael Jordan -
2013 Poster: Estimation, Optimization, and Parallelism when Data is Sparse »
John Duchi · Michael Jordan · Brendan McMahan -
2012 Workshop: Bayesian Nonparametric Models For Reliable Planning And Decision-Making Under Uncertainty »
Jonathan How · Lawrence Carin · John Fisher III · Michael Jordan · Alborz Geramifard -
2012 Poster: Privacy Aware Learning »
John Duchi · Michael Jordan · Martin J Wainwright -
2012 Poster: Ancestor Sampling for Particle Gibbs »
Fredrik Lindsten · Michael Jordan · Thomas Schön -
2012 Oral: Privacy Aware Learning »
John Duchi · Michael Jordan · Martin J Wainwright -
2012 Poster: Finite Sample Convergence Rates of Zero-Order Stochastic Optimization Methods »
John Duchi · Michael Jordan · Martin J Wainwright · Andre Wibisono -
2012 Poster: Small-Variance Asymptotics for Exponential Family Dirichlet Process Mixture Models »
Ke Jiang · Brian Kulis · Michael Jordan -
2011 Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale »
Joseph E Gonzalez · Sameer Singh · Graham Taylor · James Bergstra · Alice Zheng · Misha Bilenko · Yucheng Low · Yoshua Bengio · Michael Franklin · Carlos Guestrin · Andrew McCallum · Alexander Smola · Michael Jordan · Sugato Basu -
2011 Poster: Bayesian Bias Mitigation for Crowdsourcing »
Fabian L Wauthier · Michael Jordan -
2011 Poster: Divide-and-Conquer Matrix Factorization »
Lester W Mackey · Ameet S Talwalkar · Michael Jordan -
2010 Oral: Tree-Structured Stick Breaking for Hierarchical Data »
Ryan Adams · Zoubin Ghahramani · Michael Jordan -
2010 Invited Talk: Statistical Inference of Protein Structure and Function »
Michael Jordan -
2010 Poster: Tree-Structured Stick Breaking for Hierarchical Data »
Ryan Adams · Zoubin Ghahramani · Michael Jordan -
2010 Spotlight: Variational Inference over Combinatorial Spaces »
Alexandre Bouchard-Côté · Michael Jordan -
2010 Poster: Variational Inference over Combinatorial Spaces »
Alexandre Bouchard-Côté · Michael Jordan -
2010 Poster: Unsupervised Kernel Dimension Reduction »
Meihong Wang · Fei Sha · Michael Jordan -
2010 Poster: Heavy-Tailed Process Priors for Selective Shrinkage »
Fabian L Wauthier · Michael Jordan -
2010 Poster: Random Conic Pursuit for Semidefinite Programming »
Ariel Kleiner · ali rahimi · Michael Jordan -
2009 Workshop: Nonparametric Bayes »
Dilan Gorur · Francois Caron · Yee Whye Teh · David B Dunson · Zoubin Ghahramani · Michael Jordan -
2009 Poster: Sharing Features among Dynamical Systems with Beta Processes »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2009 Oral: Sharing Features among Dynamical Systems with Beta Processes »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2009 Poster: Asymptotically Optimal Regularization in Smooth Parametric Models »
Percy Liang · Francis Bach · Guillaume Bouchard · Michael Jordan -
2009 Poster: Nonparametric Latent Feature Models for Link Prediction »
Kurt T Miller · Tom Griffiths · Michael Jordan -
2009 Spotlight: Nonparametric Latent Feature Models for Link Prediction »
Kurt T Miller · Tom Griffiths · Michael Jordan -
2008 Oral: Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes »
Erik Sudderth · Michael Jordan -
2008 Poster: Nonparametric Bayesian Learning of Switching Linear Dynamical Systems »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2008 Poster: High-dimensional union support recovery in multivariate regression »
Guillaume R Obozinski · Martin J Wainwright · Michael Jordan -
2008 Poster: Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes »
Erik Sudderth · Michael Jordan -
2008 Spotlight: High-dimensional union support recovery in multivariate regression »
Guillaume R Obozinski · Martin J Wainwright · Michael Jordan -
2008 Spotlight: Nonparametric Bayesian Learning of Switching Linear Dynamical Systems »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2008 Poster: Posterior Consistency of the Silverman g-prior in Bayesian Model Choice »
Zhihua Zhang · Michael Jordan · Dit-Yan Yeung -
2008 Poster: DiscLDA: Discriminative Learning for Dimensionality Reduction and Classification »
Simon Lacoste-Julien · Fei Sha · Michael Jordan -
2008 Spotlight: Posterior Consistency of the Silverman g-prior in Bayesian Model Choice »
Zhihua Zhang · Michael Jordan · Dit-Yan Yeung -
2008 Poster: Efficient Inference in Phylogenetic InDel Trees »
Alexandre Bouchard-Côté · Michael Jordan · Dan Klein -
2008 Poster: Spectral Clustering with Perturbed Data »
Ling Huang · Donghui Yan · Michael Jordan · Nina Taft -
2008 Spotlight: Efficient Inference in Phylogenetic InDel Trees »
Alexandre Bouchard-Côté · Michael Jordan · Dan Klein -
2008 Spotlight: Spectral Clustering with Perturbed Data »
Ling Huang · Donghui Yan · Michael Jordan · Nina Taft -
2007 Poster: Agreement-Based Learning »
Percy Liang · Dan Klein · Michael Jordan -
2007 Spotlight: Agreement-Based Learning »
Percy Liang · Dan Klein · Michael Jordan -
2007 Spotlight: Resampling Methods for Protein Structure Prediction with Rosetta »
Ben Blum · David Baker · Michael Jordan · Philip Bradley · Rhiju Das · David Kim -
2007 Spotlight: Estimating divergence functionals and the likelihood ratio by penalized convex risk minimization »
XuanLong Nguyen · Martin J Wainwright · Michael Jordan -
2007 Poster: Resampling Methods for Protein Structure Prediction with Rosetta »
Ben Blum · David Baker · Michael Jordan · Philip Bradley · Rhiju Das · David Kim -
2007 Poster: Estimating divergence functionals and the likelihood ratio by penalized convex risk minimization »
XuanLong Nguyen · Martin J Wainwright · Michael Jordan -
2006 Poster: Distributed PCA and Network Anomaly Detection »
Ling Huang · XuanLong Nguyen · Minos Garofalakis · Michael Jordan · Anthony D Joseph · Nina Taft