Timezone: »
Dynamics-based sampling methods, such as Hybrid Monte Carlo (HMC) and Langevin dynamics (LD), are commonly used to sample target distributions. Recently, such approaches have been combined with stochastic gradient techniques to increase sampling efficiency when dealing with large datasets. An outstanding problem with this approach is that the stochastic gradient introduces an unknown amount of noise which can prevent proper sampling after discretization. To remedy this problem, we show that one can leverage a small number of additional variables in order to stabilize momentum fluctuations induced by the unknown noise. Our method is inspired by the idea of a thermostat in statistical physics and is justified by a general theory.
Author Information
Nan Ding (Google)
Youhan Fang (Purdue University)
Ryan Babbush (Google)
Changyou Chen (University at Buffalo)
Robert D Skeel (Purdue University)
Hartmut Neven (Google)
More from the Same Authors
-
2023 Poster: Label-Retrieval-Augmented Diffusion Models for Learning from Noisy Labels »
Jian Chen · Ruiyi Zhang · Tong Yu · Rohan Sharma · Zhiqiang Xu · Tong Sun · Changyou Chen -
2022 Poster: Why do We Need Large Batchsizes in Contrastive Learning? A Gradient-Bias Perspective »
Changyou Chen · Jianyi Zhang · Yi Xu · Liqun Chen · Jiali Duan · Yiran Chen · Son Tran · Belinda Zeng · Trishul Chilimbi -
2021 Poster: Bridging the Gap Between Practice and PAC-Bayes Theory in Few-Shot Meta-Learning »
Nan Ding · Xi Chen · Tomer Levinboim · Sebastian Goodman · Radu Soricut -
2020 Poster: Learning Manifold Implicitly via Explicit Heat-Kernel Learning »
Yufan Zhou · Changyou Chen · Jinhui Xu -
2020 Poster: Bayesian Multi-type Mean Field Multi-agent Imitation Learning »
Fan Yang · Alina Vereshchaka · Changyou Chen · Wen Dong -
2020 Spotlight: Bayesian Multi-type Mean Field Multi-agent Imitation Learning »
Fan Yang · Alina Vereshchaka · Changyou Chen · Wen Dong -
2019 Poster: Certified Adversarial Robustness with Additive Noise »
Bai Li · Changyou Chen · Wenlin Wang · Lawrence Carin -
2019 Poster: Reward Constrained Interactive Recommendation with Natural Language Feedback »
Ruiyi Zhang · Tong Yu · Yilin Shen · Hongxia Jin · Changyou Chen -
2017 Poster: ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching »
Chunyuan Li · Hao Liu · Changyou Chen · Yuchen Pu · Liqun Chen · Ricardo Henao · Lawrence Carin -
2017 Poster: Cold-Start Reinforcement Learning with Softmax Policy Gradient »
Nan Ding · Radu Soricut -
2016 Poster: Towards Unifying Hamiltonian Monte Carlo and Slice Sampling »
Yizhe Zhang · Xiangyu Wang · Changyou Chen · Ricardo Henao · Kai Fan · Lawrence Carin -
2016 Poster: Stochastic Gradient MCMC with Stale Gradients »
Changyou Chen · Nan Ding · Chunyuan Li · Yizhe Zhang · Lawrence Carin -
2015 : Emerging Quantum Processors and why the Machine Learning Community should care »
Hartmut Neven -
2015 Poster: On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators »
Changyou Chen · Nan Ding · Lawrence Carin -
2015 Poster: Embedding Inference for Structured Multilabel Prediction »
Farzaneh Mirzazadeh · Siamak Ravanbakhsh · Nan Ding · Dale Schuurmans -
2014 Poster: Robust Bayesian Max-Margin Clustering »
Changyou Chen · Jun Zhu · Xinhua Zhang -
2011 Poster: t-divergence Based Approximate Inference »
Nan Ding · S.V.N. Vishwanathan · Yuan Qi -
2010 Poster: t-logistic regression »
Nan Ding · S.V.N. Vishwanathan -
2009 Demonstration: Car Detector trained with the Quantum Adiabatic Algorithm »
Hartmut Neven