Timezone: »
Cross-language learning allows us to use training data from one language to build models for a different language. Many approaches to bilingual learning require that we have word-level alignment of sentences from parallel corpora. In this work we explore the use of autoencoder-based methods for cross-language learning of vectorial word representations that are aligned between two languages, while not relying on word-level alignments. We show that by simply learning to reconstruct the bag-of-words representations of aligned sentences, within and between languages, we can in fact learn high-quality representations and do without word alignments. We empirically investigate the success of our approach on the problem of cross-language text classification, where a classifier trained on a given language (e.g., English) must learn to generalize to a different language (e.g., German). In experiments on 3 language pairs, we show that our approach achieves state-of-the-art performance, outperforming a method exploiting word alignments and a strong machine translation baseline.
Author Information
Sarath Chandar (Mila / Polytechnique Montreal)
Stanislas Lauly (NYU)
Hugo Larochelle (Google DeepMind)
Mitesh Khapra (IBM India Research Lab)
Balaraman Ravindran (Indian Institute of Technology Madras)
Vikas C Raykar (IBM Research)
Amrita Saha (IBM India Research Lab)
More from the Same Authors
-
2021 : Deep RePReL--Combining Planning and Deep RL for acting in relational domains »
Harsha Kokel · Arjun Manoharan · Sriraam Natarajan · Balaraman Ravindran · Prasad Tadepalli -
2021 : Interactive Robust Policy Optimization for Multi-Agent Reinforcement Learning »
Videh Nema · Balaraman Ravindran -
2021 : Interactive Robust Policy Optimization for Multi-Agent Reinforcement Learning »
Videh Nema · Balaraman Ravindran -
2021 : Interactive Robust Policy Optimization for Multi-Agent Reinforcement Learning »
Videh Nema · Balaraman Ravindran -
2022 : Guiding Offline Reinforcement Learning Using a Safety Expert »
Richa Verma · Kartik Bharadwaj · Harshad Khadilkar · Balaraman Ravindran -
2022 : Lagrangian Model Based Reinforcement Learning »
Adithya Ramesh · Balaraman Ravindran -
2021 : Matching options to tasks using Option-Indexed Hierarchical Reinforcement Learning »
Kushal Chauhan · Soumya Chatterjee · Pradeep Shenoy · Balaraman Ravindran -
2019 : Coffee Break & Poster Session 2 »
Juho Lee · Yoonho Lee · Yee Whye Teh · Raymond A. Yeh · Yuan-Ting Hu · Alex Schwing · Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Christian Bueno · Aditya Sanghi · Pradeep Kumar Jayaraman · Ignacio Arroyo-Fernández · Andrew Hryniowski · Vinayak Mathur · Sanjay Singh · Shahrzad Haddadan · Vasco Portilheiro · Luna Zhang · Mert Yuksekgonul · Jhosimar Arias Figueroa · Deepak Maurya · Balaraman Ravindran · Frank NIELSEN · Philip Pham · Justin Payan · Andrew McCallum · Jinesh Mehta · Ke SUN -
2018 : Spotlights 2 »
Mausam · Ankit Anand · Parag Singla · Tarik Koc · Tim Klinger · Habibeh Naderi · Sungwon Lyu · Saeed Amizadeh · Kshitij Dwivedi · Songpeng Zu · Wei Feng · Balaraman Ravindran · Edouard Pineau · Abdulkadir Celikkanat · Deepak Venugopal -
2017 Workshop: Workshop on Meta-Learning »
Roberto Calandra · Frank Hutter · Hugo Larochelle · Sergey Levine -
2017 Demonstration: A Deep Reinforcement Learning Chatbot »
Iulian Vlad Serban · Chinnadhurai Sankar · Mathieu Germain · Saizheng Zhang · Zhouhan Lin · Sandeep Subramanian · Taesup Kim · Michael Pieper · Sarath Chandar · Nan Rosemary Ke · Sai Rajeswar Mudumba · Alexandre de Brébisson · Jose Sotelo · Dendi A Suhubdy · Vincent Michalski · Joelle Pineau · Yoshua Bengio -
2014 Session: Oral Session 3 »
Hugo Larochelle -
2013 Workshop: Deep Learning »
Yoshua Bengio · Hugo Larochelle · Russ Salakhutdinov · Tomas Mikolov · Matthew D Zeiler · David Mcallester · Nando de Freitas · Josh Tenenbaum · Jian Zhou · Volodymyr Mnih -
2013 Session: Spotlight Session 10 »
Hugo Larochelle -
2013 Session: Spotlight Session 9 »
Hugo Larochelle -
2013 Session: Spotlight Session 8 »
Hugo Larochelle -
2013 Session: Spotlight Session 7 »
Hugo Larochelle -
2013 Session: Spotlight Session 6 »
Hugo Larochelle -
2013 Session: Spotlight Session 5 »
Hugo Larochelle -
2013 Poster: RNADE: The real-valued neural autoregressive density-estimator »
Benigno Uria · Iain Murray · Hugo Larochelle -
2013 Session: Spotlight Session 4 »
Hugo Larochelle -
2013 Session: Spotlight Session 3 »
Hugo Larochelle -
2013 Session: Spotlight Session 2 »
Hugo Larochelle -
2013 Session: Spotlight Session 1 »
Hugo Larochelle -
2012 Poster: A Neural Autoregressive Topic Model »
Hugo Larochelle · Stanislas Lauly -
2012 Poster: Practical Bayesian Optimization of Machine Learning Algorithms »
Jasper Snoek · Hugo Larochelle · Ryan Adams -
2011 Poster: Ranking annotators for crowdsourced labeling tasks »
Vikas C Raykar · Shipeng Yu -
2010 Oral: Learning to combine foveal glimpses with a third-order Boltzmann machine »
Hugo Larochelle · Geoffrey E Hinton -
2010 Poster: Learning to combine foveal glimpses with a third-order Boltzmann machine »
Hugo Larochelle · Geoffrey E Hinton -
2008 Poster: Automatic online tuning for fast Gaussian summation »
Vlad I Morariu · Balaji Vasan Srinivasan · Vikas C Raykar · Ramani Duraiswami · Larry Davis -
2007 Poster: On Ranking in Survival Analysis: Bounds on the Concordance Index »
Vikas C Raykar · Harald Steck · Balaji R Krishnapuram · Cary Dehing-Oberije · Philippe Lambin -
2006 Poster: Greedy Layer-Wise Training of Deep Networks »
Yoshua Bengio · Pascal Lamblin · Dan Popovici · Hugo Larochelle -
2006 Talk: Greedy Layer-Wise Training of Deep Networks »
Yoshua Bengio · Pascal Lamblin · Dan Popovici · Hugo Larochelle