Timezone: »
We present a new probabilistic model for transcribing piano music from audio to a symbolic form. Our model reflects the process by which discrete musical events give rise to acoustic signals that are then superimposed to produce the observed data. As a result, the inference procedure for our model naturally resolves the source separation problem introduced by the the piano's polyphony. In order to adapt to the properties of a new instrument or acoustic environment being transcribed, we learn recording specific spectral profiles and temporal envelopes in an unsupervised fashion. Our system outperforms the best published approaches on a standard piano transcription task, achieving a 10.6% relative gain in note onset F1 on real piano audio.
Author Information
Taylor Berg-Kirkpatrick (UC Berkeley)
Jacob Andreas (MIT)
Dan Klein (UC Berkeley)
Related Events (a corresponding poster, oral, or spotlight)
-
2014 Spotlight: Unsupervised Transcription of Piano Music »
Wed. Dec 10th 03:10 -- 03:30 PM Room Level 2, room 210
More from the Same Authors
-
2021 : Language, Context, and Action: A Semantic Machines View of Conversational AI »
Dan Klein -
2021 Poster: Learning Space Partitions for Path Planning »
Kevin Yang · Tianjun Zhang · Chris Cummins · Brandon Cui · Benoit Steiner · Linnan Wang · Joseph Gonzalez · Dan Klein · Yuandong Tian -
2021 Poster: Teachable Reinforcement Learning via Advice Distillation »
Olivia Watkins · Abhishek Gupta · Trevor Darrell · Pieter Abbeel · Jacob Andreas -
2018 Poster: Speaker-Follower Models for Vision-and-Language Navigation »
Daniel Fried · Ronghang Hu · Volkan Cirik · Anna Rohrbach · Jacob Andreas · Louis-Philippe Morency · Taylor Berg-Kirkpatrick · Kate Saenko · Dan Klein · Trevor Darrell -
2017 : Afternoon Panel discussion »
Brian Skyrms · Satinder Singh · Jacob Andreas -
2017 : Poster session (and Coffee Break) »
Jacob Andreas · Kun Li · Conner Vercellino · Thomas Miconi · Wenpeng Zhang · Luca Franceschi · Zheng Xiong · Karim Ahmed · Laurent Itti · Tim Klinger · Mostafa Rohaninejad -
2015 Poster: On the Accuracy of Self-Normalized Log-Linear Models »
Jacob Andreas · Maxim Rabinovich · Michael Jordan · Dan Klein -
2014 Demonstration: Unsupervised Transcription of Piano Music »
Taylor Berg-Kirkpatrick · Jacob Andreas · Dan Klein -
2009 Poster: Randomized Pruning: Efficiently Calculating Expectations in Large Dynamic Programs »
Alexandre Bouchard-Côté · Slav Petrov · Dan Klein -
2009 Spotlight: Randomized Pruning: Efficiently Calculating Expectations in Large Dynamic Programs »
Alexandre Bouchard-Côté · Slav Petrov · Dan Klein -
2008 Workshop: Speech and Language: Unsupervised Latent-Variable Models »
Slav Petrov · Aria Haghighi · Percy Liang · Dan Klein -
2008 Poster: Efficient Inference in Phylogenetic InDel Trees »
Alexandre Bouchard-Côté · Michael Jordan · Dan Klein -
2008 Spotlight: Efficient Inference in Phylogenetic InDel Trees »
Alexandre Bouchard-Côté · Michael Jordan · Dan Klein -
2007 Poster: Agreement-Based Learning »
Percy Liang · Dan Klein · Michael Jordan -
2007 Spotlight: Agreement-Based Learning »
Percy Liang · Dan Klein · Michael Jordan -
2007 Session: Spotlights »
Dan Klein -
2007 Session: Spotlights »
Dan Klein -
2007 Spotlight: Discriminative Log-Linear Grammars with Latent Variables »
Slav Petrov · Dan Klein -
2007 Poster: Discriminative Log-Linear Grammars with Latent Variables »
Slav Petrov · Dan Klein -
2007 Poster: A Probabilistic Approach to Language Change »
Alexandre Bouchard-Côté · Percy Liang · Tom Griffiths · Dan Klein