Timezone: »
Spotlight
A Latent Source Model for Online Collaborative Filtering
Guy Bresler · George H Chen · Devavrat Shah
Tue Dec 09 08:40 AM -- 09:00 AM (PST) @ Level 2, room 210
Despite the prevalence of collaborative filtering in recommendation systems, there has been little theoretical development on why and how well it works, especially in the ``online'' setting, where items are recommended to users over time. We address this theoretical gap by introducing a model for online recommendation systems, cast item recommendation under the model as a learning problem, and analyze the performance of a cosine-similarity collaborative filtering method. In our model, each of $n$ users either likes or dislikes each of $m$ items. We assume there to be $k$ types of users, and all the users of a given type share a common string of probabilities determining the chance of liking each item. At each time step, we recommend an item to each user, where a key distinction from related bandit literature is that once a user consumes an item (e.g., watches a movie), then that item cannot be recommended to the same user again. The goal is to maximize the number of likable items recommended to users over time. Our main result establishes that after nearly $\log(km)$ initial learning time steps, a simple collaborative filtering algorithm achieves essentially optimal performance without knowing $k$. The algorithm has an exploitation step that uses cosine similarity and two types of exploration steps, one to explore the space of items (standard in the literature) and the other to explore similarity between users (novel to this work).
Author Information
Guy Bresler (Massachusetts Institute of Technology)
George H Chen (Carnegie Mellon University)
Devavrat Shah (Massachusetts Institute of Technology)
Devavrat Shah is a professor of Electrical Engineering & Computer Science and Director of Statistics and Data Science at MIT. He received PhD in Computer Science from Stanford. He received Erlang Prize from Applied Probability Society of INFORMS in 2010 and NeuIPS best paper award in 2008.
Related Events (a corresponding poster, oral, or spotlight)
-
2014 Poster: A Latent Source Model for Online Collaborative Filtering »
Wed. Dec 10th 12:00 -- 04:59 AM Room Level 2, room 210D
More from the Same Authors
-
2021 Spotlight: Regulating algorithmic filtering on social media »
Sarah Cen · Devavrat Shah -
2021 : Regret, stability, and fairness in matching markets with bandit learners »
Sarah Cen · Devavrat Shah -
2021 : Regret, stability, and fairness in matching markets with bandit learners »
Sarah Cen · Devavrat Shah -
2022 : A Causal Inference Framework for Network Interference with Panel Data »
Sarah Cen · Anish Agarwal · Christina Yu · Devavrat Shah -
2022 : On counterfactual inference with unobserved confounding »
Abhin Shah · Raaz Dwivedi · Devavrat Shah · Gregory Wornell -
2021 Poster: A Computationally Efficient Method for Learning Exponential Family Distributions »
Abhin Shah · Devavrat Shah · Gregory Wornell -
2021 Poster: Regulating algorithmic filtering on social media »
Sarah Cen · Devavrat Shah -
2021 Poster: Change Point Detection via Multivariate Singular Spectrum Analysis »
Arwa Alanqary · Abdullah Alomar · Devavrat Shah -
2021 Poster: PerSim: Data-Efficient Offline Reinforcement Learning with Heterogeneous Agents via Personalized Simulators »
Anish Agarwal · Abdullah Alomar · Varkey Alumootil · Devavrat Shah · Dennis Shen · Zhi Xu · Cindy Yang -
2020 Poster: Estimation of Skill Distribution from a Tournament »
Ali Jadbabaie · Anuran Makur · Devavrat Shah -
2020 Spotlight: Estimation of Skill Distribution from a Tournament »
Ali Jadbabaie · Anuran Makur · Devavrat Shah -
2020 Poster: Sample Efficient Reinforcement Learning via Low-Rank Matrix Estimation »
Devavrat Shah · Dogyoon Song · Zhi Xu · Yuzhe Yang -
2020 Demonstration: tspDB: Time Series Predict DB »
Anish Agarwal · Abdullah Alomar · Devavrat Shah -
2019 Poster: On Robustness of Principal Component Regression »
Anish Agarwal · Devavrat Shah · Dennis Shen · Dogyoon Song -
2019 Oral: On Robustness of Principal Component Regression »
Anish Agarwal · Devavrat Shah · Dennis Shen · Dogyoon Song -
2019 Tutorial: Synthetic Control »
Alberto Abadie · Vishal Misra · Devavrat Shah -
2018 Poster: Q-learning with Nearest Neighbors »
Devavrat Shah · Qiaomin Xie -
2017 Workshop: Nearest Neighbors for Modern Applications with Massive Data: An Age-old Solution with New Challenges »
George H Chen · Devavrat Shah · Christina Lee -
2017 Poster: Thy Friend is My Friend: Iterative Collaborative Filtering for Sparse Matrix Estimation »
Christian Borgs · Jennifer Chayes · Christina Lee · Devavrat Shah -
2016 Poster: Blind Regression: Nonparametric Regression for Latent Variable Models via Collaborative Filtering »
Dogyoon Song · Christina Lee · Yihua Li · Devavrat Shah -
2014 Workshop: Analysis of Rank Data: Confluence of Social Choice, Operations Research, and Machine Learning »
Shivani Agarwal · Hossein Azari Soufiani · Guy Bresler · Sewoong Oh · David Parkes · Arun Rajkumar · Devavrat Shah -
2014 Poster: Hardness of parameter estimation in graphical models »
Guy Bresler · David Gamarnik · Devavrat Shah -
2014 Poster: Learning Mixed Multinomial Logit Model from Ordinal Data »
Sewoong Oh · Devavrat Shah -
2014 Poster: Structure learning of antiferromagnetic Ising models »
Guy Bresler · David Gamarnik · Devavrat Shah -
2013 Workshop: Crowdsourcing: Theory, Algorithms and Applications »
Jennifer Wortman Vaughan · Greg Stoddard · Chien-Ju Ho · Adish Singla · Michael Bernstein · Devavrat Shah · Arpita Ghosh · Evgeniy Gabrilovich · Denny Zhou · Nikhil Devanur · Xi Chen · Alexander Ihler · Qiang Liu · Genevieve Patterson · Ashwinkumar Badanidiyuru Varadaraja · Hossein Azari Soufiani · Jacob Whitehill -
2013 Poster: A Latent Source Model for Nonparametric Time Series Classification »
George H Chen · Stanislav Nikolov · Devavrat Shah -
2013 Poster: Computing the Stationary Distribution Locally »
Christina Lee · Asuman Ozdaglar · Devavrat Shah -
2012 Poster: Iterative ranking from pair-wise comparisons »
Sahand N Negahban · Sewoong Oh · Devavrat Shah -
2012 Spotlight: Iterative ranking from pair-wise comparisons »
Sahand N Negahban · Sewoong Oh · Devavrat Shah -
2011 Poster: Iterative Learning for Reliable Crowdsourcing Systems »
David R Karger · Sewoong Oh · Devavrat Shah -
2011 Oral: Iterative Learning for Reliable Crowdsourcing Systems »
David R Karger · Sewoong Oh · Devavrat Shah -
2009 Poster: A Data-Driven Approach to Modeling Choice »
Vivek Farias · Srikanth Jagabathula · Devavrat Shah -
2009 Spotlight: A Data-Driven Approach to Modeling Choice »
Vivek Farias · Srikanth Jagabathula · Devavrat Shah -
2009 Poster: Local Rules for Global MAP: When Do They Work ? »
Kyomin Jung · Pushmeet Kohli · Devavrat Shah -
2008 Poster: Inferring rankings under constrained sensing »
Srikanth Jagabathula · Devavrat Shah -
2008 Oral: Inferring rankings under constrained sensing »
Srikanth Jagabathula · Devavrat Shah -
2007 Spotlight: Message Passing for Max-weight Independent Set »
Sujay Sanghavi · Devavrat Shah · Alan S Willsky -
2007 Poster: Message Passing for Max-weight Independent Set »
Sujay Sanghavi · Devavrat Shah · Alan S Willsky -
2007 Poster: Local Algorithms for Approximate Inference in Minor-Excluded Graphs »
Kyomin Jung · Devavrat Shah