Timezone: »
The problem of drawing samples from a discrete distribution can be converted into a discrete optimization problem. In this work, we show how sampling from a continuous distribution can be converted into an optimization problem over continuous space. Central to the method is a stochastic process recently described in mathematical statistics that we call the Gumbel process. We present a new construction of the Gumbel process and A* sampling, a practical generic sampling algorithm that searches for the maximum of a Gumbel process using A* search. We analyze the correctness and convergence time of A* sampling and demonstrate empirically that it makes more efficient use of bound and likelihood evaluations than the most closely related adaptive rejection sampling-based algorithms.
Author Information
Chris Maddison (University of Toronto)
Danny Tarlow (Google Research, Brain team)
Tom Minka (MSR)
Related Events (a corresponding poster, oral, or spotlight)
-
2014 Poster: A* Sampling »
Thu. Dec 11th 12:00 -- 04:59 AM Room Level 2, room 210D
More from the Same Authors
-
2021 Spotlight: PLUR: A Unifying, Graph-Based View of Program Learning, Understanding, and Repair »
Zimin Chen · Vincent J Hellendoorn · Pascal Lamblin · Petros Maniatis · Pierre-Antoine Manzagol · Daniel Tarlow · Subhodeep Moitra -
2021 Spotlight: Learning Generalized Gumbel-max Causal Mechanisms »
Guy Lorberbom · Daniel D. Johnson · Chris Maddison · Daniel Tarlow · Tamir Hazan -
2021 Workshop: Advances in Programming Languages and Neurosymbolic Systems (AIPLANS) »
Breandan Considine · Disha Shrivastava · David Yu-Tung Hui · Chin-Wei Huang · Shawn Tan · Xujie Si · Prakash Panangaden · Guy Van den Broeck · Daniel Tarlow -
2021 : Invited Talk 6 »
Chris Maddison -
2021 Poster: Structured Denoising Diffusion Models in Discrete State-Spaces »
Jacob Austin · Daniel D. Johnson · Jonathan Ho · Daniel Tarlow · Rianne van den Berg -
2021 Poster: Learning to Combine Per-Example Solutions for Neural Program Synthesis »
Disha Shrivastava · Hugo Larochelle · Daniel Tarlow -
2021 Poster: PLUR: A Unifying, Graph-Based View of Program Learning, Understanding, and Repair »
Zimin Chen · Vincent J Hellendoorn · Pascal Lamblin · Petros Maniatis · Pierre-Antoine Manzagol · Daniel Tarlow · Subhodeep Moitra -
2021 Poster: Learning Generalized Gumbel-max Causal Mechanisms »
Guy Lorberbom · Daniel D. Johnson · Chris Maddison · Daniel Tarlow · Tamir Hazan -
2014 Workshop: Perturbations, Optimization, and Statistics »
Tamir Hazan · George Papandreou · Danny Tarlow -
2014 Poster: Just-In-Time Learning for Fast and Flexible Inference »
S. M. Ali Eslami · Danny Tarlow · Pushmeet Kohli · John Winn -
2013 Workshop: Perturbations, Optimization, and Statistics »
Tamir Hazan · George Papandreou · Sasha Rakhlin · Danny Tarlow -
2013 Poster: Annealing between distributions by averaging moments »
Roger Grosse · Chris Maddison · Russ Salakhutdinov -
2013 Poster: Learning to Pass Expectation Propagation Messages »
Nicolas Heess · Danny Tarlow · John Winn -
2013 Oral: Annealing between distributions by averaging moments »
Roger Grosse · Chris Maddison · Russ Salakhutdinov -
2012 Workshop: Perturbations, Optimization, and Statistics »
Tamir Hazan · George Papandreou · Danny Tarlow -
2012 Poster: Bayesian n-Choose-k Models for Classification and Ranking »
Kevin Swersky · Danny Tarlow · Richard Zemel · Ryan Adams · Brendan J Frey -
2012 Poster: Cardinality Restricted Boltzmann Machines »
Kevin Swersky · Danny Tarlow · Ilya Sutskever · Richard Zemel · Russ Salakhutdinov · Ryan Adams -
2011 Poster: Non-conjugate Variational Message Passing for Multinomial and Binary Regression »
David A Knowles · Tom Minka -
2008 Demonstration: Infer.NET: Software for Graphical Models »
Tom Minka · John Winn · John P Guiver · Anitha Kannan -
2008 Poster: Gates »
Tom Minka · John Winn -
2008 Spotlight: Gates »
Tom Minka · John Winn -
2007 Poster: TrueSkill Through Time: Revisiting the History of Chess »
Pierre Dangauthier · Ralf Herbrich · Tom Minka · Thore K Graepel -
2007 Spotlight: TrueSkill Through Time: Revisiting the History of Chess »
Pierre Dangauthier · Ralf Herbrich · Tom Minka · Thore K Graepel -
2006 Poster: TrueSkill: A Bayesian Skill Rating System »
Ralf Herbrich · Tom Minka · Thore K Graepel -
2006 Poster: Using Combinatorial Optimization within Max-Product Belief Propagation »
John Duchi · Danny Tarlow · Gal Elidan · Daphne Koller -
2006 Spotlight: Using Combinatorial Optimization within Max-Product Belief Propagation »
John Duchi · Danny Tarlow · Gal Elidan · Daphne Koller -
2006 Talk: TrueSkill: A Bayesian Skill Rating System »
Ralf Herbrich · Tom Minka · Thore K Graepel