Timezone: »
In this paper, we take a statistical decision-theoretic viewpoint on social choice, putting a focus on the decision to be made on behalf of a system of agents. In our framework, we are given a statistical ranking model, a decision space, and a loss function defined on (parameter, decision) pairs, and formulate social choice mechanisms as decision rules that minimize expected loss. This suggests a general framework for the design and analysis of new social choice mechanisms. We compare Bayesian estimators, which minimize Bayesian expected loss, for the Mallows model and the Condorcet model respectively, and the Kemeny rule. We consider various normative properties, in addition to computational complexity and asymptotic behavior. In particular, we show that the Bayesian estimator for the Condorcet model satisfies some desired properties such as anonymity, neutrality, and monotonicity, can be computed in polynomial time, and is asymptotically different from the other two rules when the data are generated from the Condorcet model for some ground truth parameter.
Author Information
Hossein Azari Soufiani (Harvard University)
David Parkes (Harvard University)
David C. Parkes is Gordon McKay Professor of Computer Science in the School of Engineering and Applied Sciences at Harvard University. He was the recipient of the NSF Career Award, the Alfred P. Sloan Fellowship, the Thouron Scholarship and the Harvard University Roslyn Abramson Award for Teaching. Parkes received his Ph.D. degree in Computer and Information Science from the University of Pennsylvania in 2001, and an M.Eng. (First class) in Engineering and Computing Science from Oxford University in 1995. At Harvard, Parkes leads the EconCS group and teaches classes in artificial intelligence, optimization, and topics at the intersection between computer science and economics. Parkes has served as Program Chair of ACM EC’07 and AAMAS’08 and General Chair of ACM EC’10, served on the editorial board of Journal of Artificial Intelligence Research, and currently serves as Editor of Games and Economic Behavior and on the boards of Journal of Autonomous Agents and Multi-agent Systems and INFORMS Journal of Computing. His research interests include computational mechanism design, electronic commerce, stochastic optimization, preference elicitation, market design, bounded rationality, computational social choice, networks and incentives, multi-agent systems, crowd-sourcing and social computing.
Lirong Xia (RPI)
Related Events (a corresponding poster, oral, or spotlight)
-
2014 Poster: A Statistical Decision-Theoretic Framework for Social Choice »
Thu. Dec 11th 07:00 -- 11:00 PM Room Level 2, room 210D
More from the Same Authors
-
2021 : Deep Reinforcement Learning Explanation via Model Transforms »
Sarah Keren · Yoav Kolumbus · Jeffrey S Rosenschein · David Parkes · Mira Finkelstein -
2022 : Predictive Multiplicity in Probabilistic Classification »
Jamelle Watson-Daniels · David Parkes · Berk Ustun -
2022 : Predictive Multiplicity in Probabilistic Classification »
Jamelle Watson-Daniels · David Parkes · Berk Ustun -
2022 : Learning to Mitigate AI Collusion on E-Commerce Platforms »
Eric Mibuari · Gianluca Brero · David Parkes · Nicolas Lepore -
2022 : Meta-RL for Multi-Agent RL: Learning to Adapt to Evolving Agents »
Matthias Gerstgrasser · David Parkes -
2023 Poster: Data Market Design through Deep Learning »
Sai Srivatsa Ravindranath · Yanchen Jiang · David Parkes -
2023 Poster: Deep Contract Design via Discontinuous Piecewise Affine Neural Networks »
Tonghan Wang · Paul Duetting · Dmitry Ivanov · Inbal Talgam-Cohen · David Parkes -
2022 Spotlight: Lightning Talks 5A-2 »
Qiang LI · Zhiwei Xu · Jia-Qi Yang · Thai Hung Le · Haoxuan Qu · Yang Li · Artyom Sorokin · Peirong Zhang · Mira Finkelstein · Nitsan levy · Chung-Yiu Yau · dapeng li · Thommen Karimpanal George · De-Chuan Zhan · Nazar Buzun · Jiajia Jiang · Li Xu · Yichuan Mo · Yujun Cai · Yuliang Liu · Leonid Pugachev · Bin Zhang · Lucy Liu · Hoi-To Wai · Liangliang Shi · Majid Abdolshah · Yoav Kolumbus · Lin Geng Foo · Junchi Yan · Mikhail Burtsev · Lianwen Jin · Yuan Zhan · Dung Nguyen · David Parkes · Yunpeng Baiia · Jun Liu · Kien Do · Guoliang Fan · Jeffrey S Rosenschein · Sunil Gupta · Sarah Keren · Svetha Venkatesh -
2022 Spotlight: Explainable Reinforcement Learning via Model Transforms »
Mira Finkelstein · Nitsan levy · Lucy Liu · Yoav Kolumbus · David Parkes · Jeffrey S Rosenschein · Sarah Keren -
2022 Poster: Explainable Reinforcement Learning via Model Transforms »
Mira Finkelstein · Nitsan levy · Lucy Liu · Yoav Kolumbus · David Parkes · Jeffrey S Rosenschein · Sarah Keren -
2022 Poster: Learning to Mitigate AI Collusion on Economic Platforms »
Gianluca Brero · Eric Mibuari · Nicolas Lepore · David Parkes -
2021 Workshop: Learning in Presence of Strategic Behavior »
Omer Ben-Porat · Nika Haghtalab · Annie Liang · Yishay Mansour · David Parkes -
2020 Workshop: Machine Learning for Economic Policy »
Stephan Zheng · Alexander Trott · Annie Liang · Jamie Morgenstern · David Parkes · Nika Haghtalab -
2020 Poster: From Predictions to Decisions: Using Lookahead Regularization »
Nir Rosenfeld · Anna Hilgard · Sai Srivatsa Ravindranath · David Parkes -
2019 Poster: Finding Friend and Foe in Multi-Agent Games »
Jack Serrino · Max Kleiman-Weiner · David Parkes · Josh Tenenbaum -
2019 Spotlight: Finding Friend and Foe in Multi-Agent Games »
Jack Serrino · Max Kleiman-Weiner · David Parkes · Josh Tenenbaum -
2017 : Optimal Economic Design through Deep Learning »
David Parkes -
2017 Poster: Multi-View Decision Processes: The Helper-AI Problem »
Christos Dimitrakakis · David Parkes · Goran Radanovic · Paul Tylkin -
2016 Poster: Long-term Causal Effects via Behavioral Game Theory »
Panagiotis Toulis · David Parkes -
2015 Poster: Learnability of Influence in Networks »
Harikrishna Narasimhan · David Parkes · Yaron Singer -
2014 Workshop: NIPS’14 Workshop on Crowdsourcing and Machine Learning »
David Parkes · Denny Zhou · Chien-Ju Ho · Nihar Bhadresh Shah · Adish Singla · Jared Heyman · Edwin Simpson · Andreas Krause · Rafael Frongillo · Jennifer Wortman Vaughan · Panagiotis Papadimitriou · Damien Peters -
2014 Workshop: Analysis of Rank Data: Confluence of Social Choice, Operations Research, and Machine Learning »
Shivani Agarwal · Hossein Azari Soufiani · Guy Bresler · Sewoong Oh · David Parkes · Arun Rajkumar · Devavrat Shah -
2014 Workshop: NIPS Workshop on Transactional Machine Learning and E-Commerce »
David Parkes · David H Wolpert · Jennifer Wortman Vaughan · Jacob D Abernethy · Amos Storkey · Mark Reid · Ping Jin · Nihar Bhadresh Shah · Mehryar Mohri · Luis E Ortiz · Robin Hanson · Aaron Roth · Satyen Kale · Sebastien Lahaie -
2013 Workshop: Crowdsourcing: Theory, Algorithms and Applications »
Jennifer Wortman Vaughan · Greg Stoddard · Chien-Ju Ho · Adish Singla · Michael Bernstein · Devavrat Shah · Arpita Ghosh · Evgeniy Gabrilovich · Denny Zhou · Nikhil Devanur · Xi Chen · Alexander Ihler · Qiang Liu · Genevieve Patterson · Ashwinkumar Badanidiyuru Varadaraja · Hossein Azari Soufiani · Jacob Whitehill -
2013 Poster: Generalized Random Utility Models with Multiple Types »
Hossein Azari Soufiani · Hansheng Diao · Zhenyu Lai · David Parkes -
2013 Poster: Contrastive Learning Using Spectral Methods »
James Y Zou · Daniel Hsu · David Parkes · Ryan Adams -
2013 Poster: Generalized Method-of-Moments for Rank Aggregation »
Hossein Azari Soufiani · William Z Chen · David Parkes · Lirong Xia -
2012 Poster: Random Utility Theory for Social Choice: Theory and Algorithms »
Hossein Azari Soufiani · David C Parkes · Lirong Xia -
2010 Invited Talk: The Interplay of Machine Learning and Mechanism Design »
David Parkes