Timezone: »
From online news to online shopping to scholarly research, we are inundated with a torrent of information on a daily basis. With our limited time, money and attention, we often struggle to extract actionable knowledge from this deluge of data. A common approach for addressing this challenge is personalization, where results are automatically filtered to match the tastes and preferences of individual users.
This workshop aims to bring together researchers from industry and academia in order to describe recent advances and discuss future research directions pertaining to the personalization of digital systems, broadly construed. We aim to highlight new and emerging research opportunities for the machine learning community that arise from the evolving needs for personalization.
The driving factor for new opportunities in personalization is the rapid growth and sophistication of online digital systems that users can interact with (and the resulting interaction data). Personalization first gained significant traction as a way to improve the quality of information retrieval and recommender systems. As the diversity of online content has grown, the development of more effective personalized retrieval and recommender systems remains an important goal. In addition, the emergence of new types of digital systems has expanded the opportunities for personalization to be applied to a wider range of interaction paradigms. Examples of new paradigms include data organization services such as CiteULike and Pinterest, online tutoring systems, and question & answer services such as Quora.
Because the primary asset that enables personalization is the wealth of interaction data, machine learning will play a central role in virtually all future research directions. As a premier machine learning conference, NIPS is an ideal venue for hosting this workshop. Interaction data can pose many interesting machine learning challenges, such as the sheer scale, the multi-task nature of personalizing to populations of users, the exploration/exploitation trade-off when personalizing “on-the-fly”, structured prediction such as formulating a lesson plan in tutoring systems, how to interpret implicit feedback for unbiased learning from interaction data, and how to infer complex sensemaking goals from observing fine-grained interaction sequences.
In summary, our technical topics of interest include (but are not limited to):
- Learning fine-grained representations of user preferences
- Large-scale personalization
- Interpreting observable human behavior
- Interactive algorithms for “on-the-fly” personalization
- Learning to personalize using rich user interactions
- Modeling complex sensemaking goals
- Applications beyond conventional recommender systems
Author Information
Yisong Yue (California Institute of Technology)
Khalid El-Arini (Facebook)
Dilan Gorur (DeepMind)
More from the Same Authors
-
2021 : One Pass ImageNet »
Clara Huiyi Hu · Ang Li · Daniele Calandriello · Dilan Gorur -
2020 Poster: A Maximum-Entropy Approach to Off-Policy Evaluation in Average-Reward MDPs »
Nevena Lazic · Dong Yin · Mehrdad Farajtabar · Nir Levine · Dilan Gorur · Chris Harris · Dale Schuurmans -
2019 : Audrey Durand, Douwe Kiela, Kamalika Chaudhuri moderated by Yann Dauphin »
Audrey Durand · Kamalika Chaudhuri · Yann Dauphin · Orhan Firat · Dilan Gorur · Douwe Kiela -
2013 Workshop: Frontiers of Network Analysis: Methods, Models, and Applications »
Edo M Airoldi · David S Choi · Aaron Clauset · Khalid El-Arini · Jure Leskovec -
2013 Workshop: What Difference Does Personalization Make? »
Dilan Gorur · Romer Rosales · Olivier Chapelle · Dorota Glowacka -
2012 Workshop: Social network and social media analysis: Methods, models and applications »
Edo M Airoldi · David S Choi · Khalid El-Arini · Jure Leskovec -
2011 Poster: Linear Submodular Bandits and their Application to Diversified Retrieval »
Yisong Yue · Carlos Guestrin -
2009 Workshop: Nonparametric Bayes »
Dilan Gorur · Francois Caron · Yee Whye Teh · David B Dunson · Zoubin Ghahramani · Michael Jordan -
2009 Poster: Indian Buffet Processes with Power-law Behavior »
Yee Whye Teh · Dilan Gorur -
2009 Spotlight: Indian Buffet Processes with Power-law Behavior »
Yee Whye Teh · Dilan Gorur -
2008 Poster: Dependent Dirichlet Process Spike Sorting »
Jan Gasthaus · Frank Wood · Dilan Gorur · Yee Whye Teh -
2008 Poster: An Efficient Sequential Monte Carlo Algorithm for Coalescent Clustering »
Dilan Gorur · Yee Whye Teh