Timezone: »
A detailed understanding of brain function is a still-elusive grand challenge. Major advances in recording technologies (e.g. 2-photon and light-sheet microscopic imaging of calcium signals) are now beginning to provide measurements of neural activity at an unprecedented size and quality. Computational tools will be of critical importance both for the high-throughput acquisition and analysis of large-scale datasets. Reliable and robust tools for automated high-throughput analysis of such data that works have not been available so far. As a consequence, experimental reality is still characterized by semi-manual analysis or makeshift scripts that are specialized to a single setting. Similarly, many analysis still focus on the response properties of single neurons or on pairwise correlations across neurons, thereby potentially missing information which is only available at the population level.
The goal of this workshop is to discuss challenges and opportunities for
computational neuroscience and machine learning which arise from large-scale recording techniques:
* What kind of data will be generated by large-scale functional measurements in the next decade? How will it be quantitatively or qualitatively different to the kind of data we have had previously? What are the computational bottlenecks for their analysis?
* What kind of computational tools play an important role on high-throughput data acquisition, e. g. visualization/dimensionality reduction/information quantification? How can we figure out which algorithms work best, and which are the important challenges that are not met by existing techniques?
* What have we really learned from high-dimensional recordings that is new? What theories could we test, if only we had access to recordings from more neurons at the same time? What kind of statistics will be powerful enough to verify/falsify population coding theories? What can we infer about the network structure and dynamics?
We have invited scientists whose research addresses these questions, including researchers developing recording technologies, experimental and computational neuroscientists. We foresee active discussions amongst this multidisciplinary group of scientists to create a chance to discuss priorities and perspective, debate about the currently most relevant problems in the field, and emphasize the most promising future research directions. The target audience of this workshop includes industry and academic researchers interested in machine learning, neuroscience, big data and statistical inference.
Author Information
Il Memming Park (Stony Brook University)
Jakob H Macke (research center caesar, an associate of the Max Planck Society)
Ferran Diego Andilla (Telefonica R&D)
Eftychios Pnevmatikakis (Flatiron Institute)
Jeremy Freeman (HHMI Janelia Farm)
More from the Same Authors
-
2021 : Neural Latents Benchmark ‘21: Evaluating latent variable models of neural population activity »
Felix Pei · Joel Ye · David Zoltowski · Anqi Wu · Raeed Chowdhury · Hansem Sohn · Joseph O'Doherty · Krishna V Shenoy · Matthew Kaufman · Mark Churchland · Mehrdad Jazayeri · Lee Miller · Jonathan Pillow · Il Memming Park · Eva Dyer · Chethan Pandarinath -
2022 Poster: Truncated proposals for scalable and hassle-free simulation-based inference »
Michael Deistler · Pedro Goncalves · Jakob H Macke -
2022 Poster: Efficient identification of informative features in simulation-based inference »
Jonas Beck · Michael Deistler · Yves Bernaerts · Jakob H Macke · Philipp Berens -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 Poster: Intrinsic dimension of data representations in deep neural networks »
Alessio Ansuini · Alessandro Laio · Jakob H Macke · Davide Zoccolan -
2017 Spotlight: Fast amortized inference of neural activity from calcium imaging data with variational autoencoders »
Artur Speiser · Jinyao Yan · Evan Archer · Lars Buesing · Srinivas C Turaga · Jakob H Macke -
2017 Poster: Fast amortized inference of neural activity from calcium imaging data with variational autoencoders »
Artur Speiser · Jinyao Yan · Evan Archer · Lars Buesing · Srinivas C Turaga · Jakob H Macke -
2017 Poster: Sparse convolutional coding for neuronal assembly detection »
Sven Peter · Elke Kirschbaum · Martin Both · Lee Campbell · Brandon Harvey · Conor Heins · Daniel Durstewitz · Ferran Diego · Fred Hamprecht -
2017 Poster: Extracting low-dimensional dynamics from multiple large-scale neural population recordings by learning to predict correlations »
Marcel Nonnenmacher · Srinivas C Turaga · Jakob H Macke -
2017 Poster: Flexible statistical inference for mechanistic models of neural dynamics »
Jan-Matthis Lueckmann · Pedro Goncalves · Giacomo Bassetto · Kaan Öcal · Marcel Nonnenmacher · Jakob H Macke -
2017 Poster: Cost efficient gradient boosting »
Sven Peter · Ferran Diego · Fred Hamprecht · Boaz Nadler -
2016 : From Brains to Bits and Back Again »
Yoshua Bengio · Terrence Sejnowski · Christos H Papadimitriou · Jakob H Macke · Demis Hassabis · Alyson Fletcher · Andreas Tolias · Jascha Sohl-Dickstein · Konrad P Koerding -
2016 Workshop: Brains and Bits: Neuroscience meets Machine Learning »
Alyson Fletcher · Eva Dyer · Jascha Sohl-Dickstein · Joshua T Vogelstein · Konrad Koerding · Jakob H Macke -
2015 Workshop: BigNeuro 2015: Making sense of big neural data »
Eva Dyer · Joshua T Vogelstein · Konrad Koerding · Jeremy Freeman · Andreas S. Tolias -
2015 : Correlations and Signatures of Criticality in Neural Population Models »
Jakob H Macke -
2015 Workshop: Statistical Methods for Understanding Neural Systems »
Alyson Fletcher · Jakob H Macke · Ryan Adams · Jascha Sohl-Dickstein -
2015 Poster: Unlocking neural population non-stationarities using hierarchical dynamics models »
Mijung Park · Gergo Bohner · Jakob H Macke -
2014 Poster: A Bayesian model for identifying hierarchically organised states in neural population activity »
Patrick Putzky · Florian Franzen · Giacomo Bassetto · Jakob H Macke -
2014 Poster: Sparse Space-Time Deconvolution for Calcium Image Analysis »
Ferran Diego Andilla · Fred Hamprecht -
2014 Spotlight: A Bayesian model for identifying hierarchically organised states in neural population activity »
Patrick Putzky · Florian Franzen · Giacomo Bassetto · Jakob H Macke -
2014 Spotlight: Sparse Space-Time Deconvolution for Calcium Image Analysis »
Ferran Diego Andilla · Fred Hamprecht -
2014 Poster: Low-dimensional models of neural population activity in sensory cortical circuits »
Evan Archer · Urs Koster · Jonathan W Pillow · Jakob H Macke -
2013 Workshop: Acquiring and Analyzing the Activity of Large Neural Ensembles »
Srinivas C Turaga · Lars Buesing · Maneesh Sahani · Jakob H Macke -
2013 Poster: Inferring neural population dynamics from multiple partial recordings of the same neural circuit »
Srinivas C Turaga · Lars Buesing · Adam M Packer · Henry Dalgleish · Noah Pettit · Michael Hausser · Jakob H Macke -
2013 Poster: Learning Multi-level Sparse Representations »
Ferran Diego Andilla · Fred Hamprecht -
2013 Poster: Bayesian entropy estimation for binary spike train data using parametric prior knowledge »
Evan Archer · Il Memming Park · Jonathan W Pillow -
2013 Poster: Universal models for binary spike patterns using centered Dirichlet processes »
Il Memming Park · Evan Archer · Kenneth W Latimer · Jonathan W Pillow -
2013 Spotlight: Inferring neural population dynamics from multiple partial recordings of the same neural circuit »
Srinivas C Turaga · Lars Buesing · Adam M Packer · Henry Dalgleish · Noah Pettit · Michael Hausser · Jakob H Macke -
2013 Spotlight: Bayesian entropy estimation for binary spike train data using parametric prior knowledge »
Evan Archer · Il Memming Park · Jonathan W Pillow -
2013 Poster: Sparse nonnegative deconvolution for compressive calcium imaging: algorithms and phase transitions »
Eftychios Pnevmatikakis · Liam Paninski -
2013 Poster: Robust learning of low-dimensional dynamics from large neural ensembles »
David Pfau · Eftychios Pnevmatikakis · Liam Paninski -
2013 Poster: Spectral methods for neural characterization using generalized quadratic models »
Il Memming Park · Evan Archer · Nicholas Priebe · Jonathan W Pillow -
2012 Poster: Spectral learning of linear dynamics from generalised-linear observations with application to neural population data »
Lars Buesing · Jakob H Macke · Maneesh Sahani -
2012 Oral: Spectral learning of linear dynamics from generalised-linear observations with application to neural population data »
Lars Buesing · Jakob H Macke · Maneesh Sahani -
2012 Poster: Bayesian estimation of discrete entropy with mixtures of stick-breaking priors »
Evan Archer · Jonathan W Pillow · Il Memming Park -
2011 Oral: Empirical models of spiking in neural populations »
Jakob H Macke · Lars Buesing · John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: Bayesian Spike-Triggered Covariance Analysis »
Il Memming Park · Jonathan W Pillow -
2011 Poster: Empirical models of spiking in neural populations »
Jakob H Macke · Lars Buesing · John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: How biased are maximum entropy models? »
Jakob H Macke · Iain Murray · Peter E Latham -
2010 Poster: A novel family of non-parametric cumulative based divergences for point processes »
Sohan Seth · Il Memming Park · Austin J Brockmeier · Mulugeta Semework · John S Choi · Joseph T Francis · Jose C Principe -
2009 Poster: Bayesian estimation of orientation preference maps »
Jakob H Macke · Sebastian Gerwinn · Leonard White · Matthias Kaschube · Matthias Bethge -
2007 Oral: Bayesian Inference for Spiking Neuron Models with a Sparsity Prior »
Sebastian Gerwinn · Jakob H Macke · Matthias Seeger · Matthias Bethge -
2007 Poster: Bayesian Inference for Spiking Neuron Models with a Sparsity Prior »
Sebastian Gerwinn · Jakob H Macke · Matthias Seeger · Matthias Bethge -
2007 Poster: Receptive Fields without Spike-Triggering »
Jakob H Macke · Günther Zeck · Matthias Bethge -
2006 Poster: Inducing Metric Violations in Human Similarity Judgements »
Julian Laub · Jakob H Macke · Klaus-Robert Müller · Felix A Wichmann