Timezone: »
Traditional machine learning and data analysis methods often assume that the input data can be represented by vectors in Euclidean space. While this assumption has worked well for many applications, researchers have increasingly realized that if the data is intrinsically non-Euclidean, ignoring this geometrical structure can lead to suboptimal results.
In the existing literature, there are two common approaches for exploiting data geometry when the data is assumed to lie on a Riemannian manifold.
In the first direction, often referred to as manifold learning, the data is assumed to lie on an unknown Riemannian manifold and the structure of this manifold is exploited through the training data, either labeled or unlabeled. Examples of manifold learning techniques include Manifold Regularization via the graph Laplacian, Locally Linear Embedding, and Isometric Mapping.
In the second direction, which is gaining increasing importance and success, the Riemannian manifold representing the input data is assumed to be known explicitly. Some manifolds that have been widely used for data representation are: the manifold of symmetric, positive definite matrices, the Grassmannian manifold of subspaces of a vector space, and the Kendall manifold of shapes. When the manifold is known, the full power of the mathematical theory of Riemannian geometry can be exploited in both the formulation of algorithms as well as their theoretical analysis.
Successful applications of these approaches are numerous and range from brain imaging and low rank matrix completion to computer vision tasks such as object detection and tracking.
This workshop focuses on the latter direction. We aim to bring together researchers in statistics, machine learning, computer vision, and other areas, to discuss and exchange current state of the art results , both theoretically and computationally, and identify potential future research directions
Author Information
Minh Ha Quang (Istituto Italiano di Tecnologia)
Vikas Sindhwani (Google)
Vittorio Murino (Istituto Italiano di Tecnologia)
Michael Betancourt (University of Warwick)
Tom Fletcher (University of Utah)
Richard I Hartley (Australian National University)
Anuj Srivastava (Florida State University)
Bart Vandereycken (Princeton University)
More from the Same Authors
-
2022 Poster: Contact-aware Human Motion Forecasting »
Wei Mao · miaomiao Liu · Richard I Hartley · Mathieu Salzmann -
2022 Spotlight: Lightning Talks 4B-3 »
Zicheng Zhang · Mancheng Meng · Antoine Guedon · Yue Wu · Wei Mao · Zaiyu Huang · Peihao Chen · Shizhe Chen · yongwei chen · Keqiang Sun · Yi Zhu · chen rui · Hanhui Li · Dongyu Ji · Ziyan Wu · miaomiao Liu · Pascal Monasse · Yu Deng · Shangzhe Wu · Pierre-Louis Guhur · Jiaolong Yang · Kunyang Lin · Makarand Tapaswi · Zhaoyang Huang · Terrence Chen · Jiabao Lei · Jianzhuang Liu · Vincent Lepetit · Zhenyu Xie · Richard I Hartley · Dinggang Shen · Xiaodan Liang · Runhao Zeng · Cordelia Schmid · Michael Kampffmeyer · Mathieu Salzmann · Ning Zhang · Fangyun Wei · Yabin Zhang · Fan Yang · Qifeng Chen · Wei Ke · Quan Wang · Thomas Li · qingling Cai · Kui Jia · Ivan Laptev · Mingkui Tan · Xin Tong · Hongsheng Li · Xiaodan Liang · Chuang Gan -
2022 Spotlight: Contact-aware Human Motion Forecasting »
Wei Mao · miaomiao Liu · Richard I Hartley · Mathieu Salzmann -
2021 Poster: Distributed Principal Component Analysis with Limited Communication »
Foivos Alimisis · Peter Davies · Bart Vandereycken · Dan Alistarh -
2020 Poster: Intra Order-preserving Functions for Calibration of Multi-Class Neural Networks »
Amir Rahimi · Amirreza Shaban · Ching-An Cheng · Richard I Hartley · Byron Boots -
2017 Poster: Semi-supervised Learning with GANs: Manifold Invariance with Improved Inference »
Abhishek Kumar · Prasanna Sattigeri · Tom Fletcher -
2015 Poster: Structured Transforms for Small-Footprint Deep Learning »
Vikas Sindhwani · Tara Sainath · Sanjiv Kumar -
2015 Spotlight: Structured Transforms for Small-Footprint Deep Learning »
Vikas Sindhwani · Tara Sainath · Sanjiv Kumar -
2014 Poster: Log-Hilbert-Schmidt metric between positive definite operators on Hilbert spaces »
Minh Ha Quang · Marco San Biagio · Vittorio Murino -
2014 Spotlight: Log-Hilbert-Schmidt metric between positive definite operators on Hilbert spaces »
Minh Ha Quang · Marco San Biagio · Vittorio Murino -
2013 Poster: Probabilistic Principal Geodesic Analysis »
Miaomiao Zhang · Tom Fletcher -
2013 Poster: Sketching Structured Matrices for Faster Nonlinear Regression »
Haim Avron · Vikas Sindhwani · David Woodruff -
2011 Workshop: Machine Learning and Interpretation in Neuroimaging (MLINI-2011) »
Melissa K Carroll · Guillermo Cecchi · Kai-min K Chang · Moritz Grosse-Wentrup · James Haxby · Georg Langs · Anna Korhonen · Bjoern Menze · Brian Murphy · Janaina Mourao-Miranda · Vittorio Murino · Francisco Pereira · Irina Rish · Mert Sabuncu · Irina Simanova · Bertrand Thirion -
2011 Poster: Non-parametric Group Orthogonal Matching Pursuit for Sparse Learning with Multiple Kernels »
Vikas Sindhwani · Aurelie Lozano -
2011 Poster: Signal Estimation Under Random Time-Warpings and Nonlinear Signal Alignment »
Sebastian A Kurtek · Anuj Srivastava · Wei Wu -
2010 Poster: Structural epitome: a way to summarize one’s visual experience »
Nebojsa Jojic · Alessandro Perina · Vittorio Murino -
2010 Poster: Block Variable Selection in Multivariate Regression and High-dimensional Causal Inference »
Aurelie Lozano · Vikas Sindhwani -
2009 Poster: Free energy score space »
Alessandro Perina · Marco Cristani · Umberto Castellani · Vittorio Murino · Nebojsa Jojic -
2008 Poster: Regularized Co-Clustering with Dual Supervision »
Vikas Sindhwani · Jianying Hu · Aleksandra Mojsilovic -
2006 Poster: Relational Learning with Gaussian Processes »
Wei Chu · Vikas Sindhwani · Zoubin Ghahramani · Sathiya Selvaraj Keerthi -
2006 Poster: Clustering Under Prior Knowledge with Application to Image Segmentation »
Mario T Figueiredo · Dong Seon Cheng · Vittorio Murino -
2006 Poster: An Efficient Method for Gradient-Based Adaptation of Hyperparameters in SVM Models »
Sathiya Selvaraj Keerthi · Vikas Sindhwani · Olivier Chapelle -
2006 Poster: Branch and Bound for Semi-Supervised Support Vector Machines »
Olivier Chapelle · Vikas Sindhwani · Sathiya Selvaraj Keerthi