Timezone: »
Challenges in Machine Learning have proven to be efficient and cost-effective ways to quickly bring to industry solutions that may have been confined to research. In addition, the playful nature of challenges naturally attracts students, making challenge a great teaching resource. Challenge participants range from undergraduate students to retirees, joining forces in a rewarding environment allowing them to learn, perform research, and demonstrate excellence. Therefore challenges can be used as a means of directing research, advancing the state-of-the-art or venturing in completely new domains.
Yet, despite initial successes and efforts made to facilitate challenge organization with the availability of competition platforms, little effort has been put into the theoretical foundations of challenge design and the optimization of challenge protocols. This workshop will bring together workshop organizers, platform providers, and participants to discuss best practices in challenge organization and new methods and application opportunities to design high impact challenges. The themes to be discussed will include new paradigms of challenge organization to tackle complex problems (e.g. tasks involving multiple data modalities and/or multiple levels of processing).
Author Information
Isabelle Guyon (U. Paris-Saclay & ChaLearn)
Isabelle Guyon recently joined Google Brain as a research scientist. She is also professor of artificial intelligence at Université Paris-Saclay (Orsay). Her areas of expertise include computer vision, bioinformatics, and power systems. She is best known for being a co-inventor of Support Vector Machines. Her recent interests are in automated machine learning, meta-learning, and data-centric AI. She has been a strong promoter of challenges and benchmarks, and is president of ChaLearn, a non-profit dedicated to organizing machine learning challenges. She is community lead of Codalab competitions, a challenge platform used both in academia and industry. She co-organized the “Challenges in Machine Learning Workshop” @ NeurIPS between 2014 and 2019, launched the "NeurIPS challenge track" in 2017 while she was general chair, and pushed the creation of the "NeurIPS datasets and benchmark track" in 2021, as a NeurIPS board member.
Evelyne Viegas (Microsoft Research)
Percy Liang (Stanford University)

Percy Liang is an Assistant Professor of Computer Science at Stanford University (B.S. from MIT, 2004; Ph.D. from UC Berkeley, 2011). His research spans machine learning and natural language processing, with the goal of developing trustworthy agents that can communicate effectively with people and improve over time through interaction. Specific topics include question answering, dialogue, program induction, interactive learning, and reliable machine learning. His awards include the IJCAI Computers and Thought Award (2016), an NSF CAREER Award (2016), a Sloan Research Fellowship (2015), and a Microsoft Research Faculty Fellowship (2014).
Olga Russakovsky (Princeton University)
Rinat Sergeev (Harvard)
Gábor Melis (Google Deepmind)
Michele Sebag (Universite Paris-Sud, CNRS)
Gustavo Stolovitzky (IBM Research)
Jaume Bacardit (Newcastle University)
Michael S Kim (Virginia Tech)
Ben Hamner (Kaggle)
More from the Same Authors
-
2020 : Invited Talk 8 Presentation - Percy Liang - Semantic Parsing for Natural Language Interfaces »
Percy Liang -
2022 : Out-of-Distribution Robustness via Targeted Augmentations »
Irena Gao · Shiori Sagawa · Pang Wei Koh · Tatsunori Hashimoto · Percy Liang -
2022 : Surgical Fine-Tuning Improves Adaptation to Distribution Shifts »
Yoonho Lee · Annie Chen · Fahim Tajwar · Ananya Kumar · Huaxiu Yao · Percy Liang · Chelsea Finn -
2022 : Fifteen-minute Competition Overview Video »
Dustin Carrión-Ojeda · Ihsan Ullah · Sergio Escalera · Isabelle Guyon · Felix Mohr · Manh Hung Nguyen · Joaquin Vanschoren -
2022 : Surgical Fine-Tuning Improves Adaptation to Distribution Shifts »
Yoonho Lee · Annie Chen · Fahim Tajwar · Ananya Kumar · Huaxiu Yao · Percy Liang · Chelsea Finn -
2023 Competition: NeurIPS 2023 Machine Unlearning Competition »
Eleni Triantafillou · Fabian Pedregosa · Meghdad Kurmanji · Kairan ZHAO · Gintare Karolina Dziugaite · Peter Triantafillou · Ioannis Mitliagkas · Vincent Dumoulin · Lisheng Sun · Peter Kairouz · Julio C Jacques Junior · Jun Wan · Sergio Escalera · Isabelle Guyon -
2022 Competition: Cross-Domain MetaDL: Any-Way Any-Shot Learning Competition with Novel Datasets from Practical Domains »
Dustin Carrión-Ojeda · Ihsan Ullah · Sergio Escalera · Isabelle Guyon · Felix Mohr · Manh Hung Nguyen · Joaquin Vanschoren -
2022 : Fine-Tuning without Distortion: Improving Robustness to Distribution Shifts »
Percy Liang · Ananya Kumar -
2022 Workshop: MATH-AI: Toward Human-Level Mathematical Reasoning »
Pan Lu · Swaroop Mishra · Sean Welleck · Yuhuai Wu · Hannaneh Hajishirzi · Percy Liang -
2022 Poster: What Can Transformers Learn In-Context? A Case Study of Simple Function Classes »
Shivam Garg · Dimitris Tsipras · Percy Liang · Gregory Valiant -
2022 Poster: Insights into Pre-training via Simpler Synthetic Tasks »
Yuhuai Wu · Felix Li · Percy Liang -
2022 Poster: Meta-Album: Multi-domain Meta-Dataset for Few-Shot Image Classification »
Ihsan Ullah · Dustin Carrión-Ojeda · Sergio Escalera · Isabelle Guyon · Mike Huisman · Felix Mohr · Jan N. van Rijn · Haozhe Sun · Joaquin Vanschoren · Phan Anh Vu -
2022 : Isabelle Guyon »
Isabelle Guyon -
2022 Invited Talk: The Data-Centric Era: How ML is Becoming an Experimental Science »
Isabelle Guyon -
2022 Poster: Deep Bidirectional Language-Knowledge Graph Pretraining »
Michihiro Yasunaga · Antoine Bosselut · Hongyu Ren · Xikun Zhang · Christopher D Manning · Percy Liang · Jure Leskovec -
2022 Poster: Decentralized Training of Foundation Models in Heterogeneous Environments »
Binhang Yuan · Yongjun He · Jared Davis · Tianyi Zhang · Tri Dao · Beidi Chen · Percy Liang · Christopher Ré · Ce Zhang -
2022 Poster: Diffusion-LM Improves Controllable Text Generation »
Xiang Li · John Thickstun · Ishaan Gulrajani · Percy Liang · Tatsunori Hashimoto -
2022 Poster: Picking on the Same Person: Does Algorithmic Monoculture lead to Outcome Homogenization? »
Rishi Bommasani · Kathleen A. Creel · Ananya Kumar · Dan Jurafsky · Percy Liang -
2022 Competition: NeurIPS 2022 Competition Track: Overview & Results »
Marco Ciccone · Gustavo Stolovitzky · Jake Albrecht -
2022 : NeurIPS Competitions – Evolution and Opportunities »
Isabelle Guyon · Evelyne Viegas -
2022 Poster: Improving Self-Supervised Learning by Characterizing Idealized Representations »
Yann Dubois · Stefano Ermon · Tatsunori Hashimoto · Percy Liang -
2021 Workshop: Distribution shifts: connecting methods and applications (DistShift) »
Shiori Sagawa · Pang Wei Koh · Fanny Yang · Hongseok Namkoong · Jiashi Feng · Kate Saenko · Percy Liang · Sarah Bird · Sergey Levine -
2021 Panel: The Role of Benchmarks in the Scientific Progress of Machine Learning »
Lora Aroyo · Samuel Bowman · Isabelle Guyon · Joaquin Vanschoren -
2020 : Invited Talk 8 Q/A - Percy Liang »
Percy Liang -
2020 : Keynote talk by Isabelle Guyon and Evelyne Viegas - "AI Competitions and the Science Behind Contests" »
Isabelle Guyon · Evelyne Viegas -
2020 Workshop: ML Competitions at the Grassroots (CiML 2020) »
Tara Chklovski · Adrienne Mendrik · Amir Banifatemi · Gustavo Stolovitzky -
2020 Poster: Deep Statistical Solvers »
Balthazar Donon · Zhengying Liu · Wenzhuo LIU · Isabelle Guyon · Antoine Marot · Marc Schoenauer -
2020 Poster: Enabling certification of verification-agnostic networks via memory-efficient semidefinite programming »
Sumanth Dathathri · Krishnamurthy Dvijotham · Alexey Kurakin · Aditi Raghunathan · Jonathan Uesato · Rudy Bunel · Shreya Shankar · Jacob Steinhardt · Ian Goodfellow · Percy Liang · Pushmeet Kohli -
2019 : Extended Poster Session »
Travis LaCroix · Marie Ossenkopf · Mina Lee · Nicole Fitzgerald · Daniela Mihai · Jonathon Hare · Ali Zaidi · Alexander Cowen-Rivers · Alana Marzoev · Eugene Kharitonov · Luyao Yuan · Tomasz Korbak · Paul Pu Liang · Yi Ren · Roberto Dessì · Peter Potash · Shangmin Guo · Tatsunori Hashimoto · Percy Liang · Julian Zubek · Zipeng Fu · Song-Chun Zhu · Adam Lerer -
2019 : Open Space Topic “The Organization of Challenges for the Benefit of More Diverse Communities” »
Adrienne Mendrik · Isabelle Guyon · Wei-Wei Tu · Evelyne Viegas · Ming LI -
2019 : Catered Lunch and Poster Viewing (in Workshop Room) »
Gustavo Stolovitzky · Prabhu Pradhan · Pablo Duboue · Zhiwen Tang · Aleksei Natekin · Elizabeth Bondi-Kelly · Xavier Bouthillier · Stephanie Milani · Heimo Müller · Andreas T. Holzinger · Stefan Harrer · Ben Day · Andrey Ustyuzhanin · William Guss · Mahtab Mirmomeni -
2019 Workshop: CiML 2019: Machine Learning Competitions for All »
Adrienne Mendrik · Wei-Wei Tu · Wei-Wei Tu · Isabelle Guyon · Evelyne Viegas · Ming LI -
2019 : Welcome and Opening Remarks »
Adrienne Mendrik · Wei-Wei Tu · Isabelle Guyon · Evelyne Viegas · Ming LI -
2019 Poster: SPoC: Search-based Pseudocode to Code »
Sumith Kulal · Panupong Pasupat · Kartik Chandra · Mina Lee · Oded Padon · Alex Aiken · Percy Liang -
2019 Poster: On the Accuracy of Influence Functions for Measuring Group Effects »
Pang Wei Koh · Kai-Siang Ang · Hubert Teo · Percy Liang -
2019 Poster: Verified Uncertainty Calibration »
Ananya Kumar · Percy Liang · Tengyu Ma -
2019 Spotlight: Verified Uncertainty Calibration »
Ananya Kumar · Percy Liang · Tengyu Ma -
2018 : TBA 4 »
Michele Sebag -
2018 : Afternoon Welcome - Isabelle Guyon and Evelyne Viegas »
Isabelle Guyon -
2018 : Natural Language Supervision »
Percy Liang -
2018 Workshop: CiML 2018 - Machine Learning competitions "in the wild": Playing in the real world or in real time »
Isabelle Guyon · Evelyne Viegas · Sergio Escalera · Jacob D Abernethy -
2018 : Morning Welcome - - Isabelle Guyon and Evelyne Viegas »
Evelyne Viegas -
2018 : Datasets and Benchmarks for Causal Learning »
Csaba Szepesvari · Isabelle Guyon · Nicolai Meinshausen · David Blei · Elias Bareinboim · Bernhard Schölkopf · Pietro Perona -
2018 : AutoML3 - LifeLong ML with concept drift Challenge: Overview and award ceremony »
Hugo Jair Escalante · Isabelle Guyon · Daniel Silver · Evelyne Viegas · Wei-Wei Tu -
2018 : Evaluating Causation Coefficients »
Isabelle Guyon -
2018 Poster: Uncertainty Sampling is Preconditioned Stochastic Gradient Descent on Zero-One Loss »
Stephen Mussmann · Percy Liang -
2018 Poster: Semidefinite relaxations for certifying robustness to adversarial examples »
Aditi Raghunathan · Jacob Steinhardt · Percy Liang -
2018 Poster: A Retrieve-and-Edit Framework for Predicting Structured Outputs »
Tatsunori Hashimoto · Kelvin Guu · Yonatan Oren · Percy Liang -
2018 Oral: A Retrieve-and-Edit Framework for Predicting Structured Outputs »
Tatsunori Hashimoto · Kelvin Guu · Yonatan Oren · Percy Liang -
2017 Workshop: Machine Learning Challenges as a Research Tool »
Isabelle Guyon · Evelyne Viegas · Sergio Escalera · Jacob D Abernethy -
2017 : Introduction - Isabelle Guyon and Evelyne Viegas »
Isabelle Guyon -
2017 : (Invited Talk) Percy Liang: Learning with Adversaries and Collaborators »
Percy Liang -
2017 Workshop: Machine Learning and Computer Security »
Jacob Steinhardt · Nicolas Papernot · Bo Li · Chang Liu · Percy Liang · Dawn Song -
2017 Demonstration: Babble Labble: Learning from Natural Language Explanations »
Braden Hancock · Paroma Varma · Percy Liang · Christopher Ré · Stephanie Wang -
2017 Poster: Learning Overcomplete HMMs »
Vatsal Sharan · Sham Kakade · Percy Liang · Gregory Valiant -
2017 Poster: Certified Defenses for Data Poisoning Attacks »
Jacob Steinhardt · Pang Wei Koh · Percy Liang -
2017 Poster: Unsupervised Transformation Learning via Convex Relaxations »
Tatsunori Hashimoto · Percy Liang · John Duchi -
2016 Workshop: Deep Learning for Action and Interaction »
Chelsea Finn · Raia Hadsell · David Held · Sergey Levine · Percy Liang -
2016 Workshop: Machine Learning for Spatiotemporal Forecasting »
Florin Popescu · Sergio Escalera · Xavier Baró · Stephane Ayache · Isabelle Guyon -
2016 : Gaming challenges and encouraging collaborations »
Sergio Escalera · Isabelle Guyon -
2016 : Ben Hamner (Kaggle): "Kaggle Competitions and The Future of Reproducible Machine Learning" »
Ben Hamner -
2016 Workshop: Nonconvex Optimization for Machine Learning: Theory and Practice »
Hossein Mobahi · Anima Anandkumar · Percy Liang · Stefanie Jegelka · Anna Choromanska -
2016 Workshop: Challenges in Machine Learning: Gaming and Education »
Isabelle Guyon · Evelyne Viegas · Balázs Kégl · Ben Hamner · Sergio Escalera -
2016 Workshop: Reliable Machine Learning in the Wild »
Dylan Hadfield-Menell · Adrian Weller · David Duvenaud · Jacob Steinhardt · Percy Liang -
2016 : Welcome »
Evelyne Viegas -
2016 Demonstration: Biometric applications of CNNs: get a job at "Impending Technologies"! »
Sergio Escalera · Isabelle Guyon · Baiyu Chen · Marc Quintana · Umut Güçlü · Yağmur Güçlütürk · Xavier Baró · Rob van Lier · Carlos Andujar · Marcel A. J. van Gerven · Bernhard E Boser · Luke Wang -
2016 Demonstration: Project Malmo - Minecraft for AI Research »
Katja Hofmann · Matthew A Johnson · Fernando Diaz · Alekh Agarwal · Tim Hutton · David Bignell · Evelyne Viegas -
2016 Poster: Unsupervised Risk Estimation Using Only Conditional Independence Structure »
Jacob Steinhardt · Percy Liang -
2015 : Sharing the "How" (and not the "What") »
Percy Liang -
2015 Workshop: Challenges in Machine Learning (CiML 2015): "Open Innovation" and "Coopetitions" »
Isabelle Guyon · Evelyne Viegas · Ben Hamner · Balázs Kégl -
2015 Workshop: Non-convex Optimization for Machine Learning: Theory and Practice »
Anima Anandkumar · Niranjan Uma Naresh · Kamalika Chaudhuri · Percy Liang · Sewoong Oh -
2015 : Wonders and Woes of ML Competitions »
Ben Hamner -
2015 Demonstration: CodaLab Worksheets for Reproducible, Executable Papers »
Percy Liang · Evelyne Viegas -
2015 Poster: On-the-Job Learning with Bayesian Decision Theory »
Keenon Werling · Arun Tejasvi Chaganty · Percy Liang · Christopher Manning -
2015 Spotlight: On-the-Job Learning with Bayesian Decision Theory »
Keenon Werling · Arun Tejasvi Chaganty · Percy Liang · Christopher Manning -
2015 Poster: Estimating Mixture Models via Mixtures of Polynomials »
Sida Wang · Arun Tejasvi Chaganty · Percy Liang -
2015 Poster: Learning with Relaxed Supervision »
Jacob Steinhardt · Percy Liang -
2015 Poster: Calibrated Structured Prediction »
Volodymyr Kuleshov · Percy Liang -
2014 Workshop: High-energy particle physics, machine learning, and the HiggsML data challenge (HEPML) »
Glen Cowan · Balázs Kégl · Kyle Cranmer · Gábor Melis · Tim Salimans · Vladimir Vava Gligorov · Daniel Whiteson · Lester Mackey · Wojciech Kotlowski · Roberto Díaz Morales · Pierre Baldi · Cecile Germain · David Rousseau · Isabelle Guyon · Tianqi Chen -
2014 Poster: Altitude Training: Strong Bounds for Single-Layer Dropout »
Stefan Wager · William S Fithian · Sida Wang · Percy Liang -
2014 Poster: Simple MAP Inference via Low-Rank Relaxations »
Roy Frostig · Sida Wang · Percy Liang · Christopher D Manning -
2013 Workshop: NIPS 2013 Workshop on Causality: Large-scale Experiment Design and Inference of Causal Mechanisms »
Isabelle Guyon · Leon Bottou · Bernhard Schölkopf · Alexander Statnikov · Evelyne Viegas · james m robins -
2013 Poster: Dropout Training as Adaptive Regularization »
Stefan Wager · Sida Wang · Percy Liang -
2013 Spotlight: Dropout Training as Adaptive Regularization »
Stefan Wager · Sida Wang · Percy Liang -
2012 Poster: Identifiability and Unmixing of Latent Parse Trees »
Percy Liang · Sham M Kakade · Daniel Hsu -
2012 Demonstration: Gesture recognition with Kinect »
Isabelle Guyon -
2010 Spotlight: SpikeAnts, a spiking neuron network modelling the emergence of organization in a complex system »
Sylvain Chevallier · Helene Paugam-Moisy · Michele Sebag -
2010 Poster: SpikeAnts, a spiking neuron network modelling the emergence of organization in a complex system »
Sylvain Chevallier · Helene Paugam-Moisy · Michele Sebag -
2009 Workshop: The Generative and Discriminative Learning Interface »
Simon Lacoste-Julien · Percy Liang · Guillaume Bouchard -
2009 Workshop: Clustering: Science or art? Towards principled approaches »
Margareta Ackerman · Shai Ben-David · Avrim Blum · Isabelle Guyon · Ulrike von Luxburg · Robert Williamson · Reza Zadeh -
2009 Mini Symposium: Causality and Time Series Analysis »
Florin Popescu · Isabelle Guyon · Guido Nolte -
2009 Demonstration: Causality Workbench »
Isabelle Guyon -
2009 Poster: Asymptotically Optimal Regularization in Smooth Parametric Models »
Percy Liang · Francis Bach · Guillaume Bouchard · Michael Jordan -
2008 Workshop: Speech and Language: Unsupervised Latent-Variable Models »
Slav Petrov · Aria Haghighi · Percy Liang · Dan Klein -
2008 Workshop: Causality: objectives and assessment »
Isabelle Guyon · Dominik Janzing · Bernhard Schölkopf -
2007 Poster: Agreement-Based Learning »
Percy Liang · Dan Klein · Michael Jordan -
2007 Spotlight: Agreement-Based Learning »
Percy Liang · Dan Klein · Michael Jordan -
2007 Demonstration: CLOP: a Matlab Learning Object Package »
Amir Reza Saffari Azar Alamdari · Isabelle Guyon · Hugo Jair Escalante · Gökhan H Bakir · Gavin Cawley -
2007 Poster: A Probabilistic Approach to Language Change »
Alexandre Bouchard-Côté · Percy Liang · Tom Griffiths · Dan Klein -
2006 Workshop: Multi-level Inference Workshop and Model Selection Game »
Isabelle Guyon -
2006 Poster: Training Conditional Random Fields for Maximum Parse Accuracy »
Samuel Gross · Olga Russakovsky · Chuong B Do · Serafim Batzoglou