Timezone: »
The ever-increasing size of data sets has resulted in an immense effort in machine learning and statistics to develop more powerful and scalable probabilistic models. Efficient inference remains a challenge and limits the use of these models in large-scale scientific and industrial applications. Traditional unbiased inference schemes such as Markov chain Monte Carlo (MCMC) are often slow to run and difficult to evaluate in finite time. In contrast, variational inference allows for competitive run times and more reliable convergence diagnostics on large-scale and streaming data—while continuing to allow for complex, hierarchical modelling. This workshop aims to bring together researchers and practitioners addressing problems of scalable approximate inference to discuss recent advances in variational inference, and to debate the roadmap towards further improvements and wider adoption of variational methods.
The recent resurgence of interest in variational methods includes new methods for scalability using stochastic gradient methods, extensions to the streaming variational setting, improved local variational methods, inference in non-linear dynamical systems, principled regularisation in deep neural networks, and inference-based decision making in reinforcement learning, amongst others. Variational methods have clearly emerged as a preferred way to allow for tractable Bayesian inference. Despite this interest, there remain significant trade-offs in speed, accuracy, simplicity, applicability, and learned model complexity between variational inference and other approximative schemes such as MCMC and point estimation. In this workshop, we will discuss how to rigorously characterise these tradeoffs, as well as how they might be made more favourable. Moreover, we will address other issues of adoption in scientific communities that could benefit from the use of variational inference including, but not limited to, the development of relevant software packages.
Author Information
David Blei (Columbia University)
Shakir Mohamed (DeepMind)

Shakir Mohamed is a senior staff scientist at DeepMind in London. Shakir's main interests lie at the intersection of approximate Bayesian inference, deep learning and reinforcement learning, and the role that machine learning systems at this intersection have in the development of more intelligent and general-purpose learning systems. Before moving to London, Shakir held a Junior Research Fellowship from the Canadian Institute for Advanced Research (CIFAR), based in Vancouver at the University of British Columbia with Nando de Freitas. Shakir completed his PhD with Zoubin Ghahramani at the University of Cambridge, where he was a Commonwealth Scholar to the United Kingdom. Shakir is from South Africa and completed his previous degrees in Electrical and Information Engineering at the University of the Witwatersrand, Johannesburg.
Michael Jordan (UC Berkeley)
Charles Blundell (DeepMind)
Tamara Broderick (MIT)
Matthew D. Hoffman (Google)
More from the Same Authors
-
2021 Spotlight: Learning Equilibria in Matching Markets from Bandit Feedback »
Meena Jagadeesan · Alexander Wei · Yixin Wang · Michael Jordan · Jacob Steinhardt -
2021 Spotlight: Robust Learning of Optimal Auctions »
Wenshuo Guo · Michael Jordan · Emmanouil Zampetakis -
2021 : Optimization with Adaptive Step Size Selection from a Dynamical Systems Perspective »
Neha Wadia · Michael Jordan · Michael Muehlebach -
2021 : Optimization with Adaptive Step Size Selection from a Dynamical Systems Perspective »
Neha Wadia · Michael Jordan · Michael Muehlebach -
2021 : Last-Iterate Convergence of Saddle Point Optimizers via High-Resolution Differential Equations »
Tatjana Chavdarova · Michael Jordan · Emmanouil Zampetakis -
2021 : On the convergence of stochastic extragradient for bilinear games using restarted iteration averaging »
Chris Junchi Li · Yaodong Yu · Nicolas Loizou · Gauthier Gidel · Yi Ma · Nicolas Le Roux perso · Michael Jordan -
2021 : On the convergence of stochastic extragradient for bilinear games using restarted iteration averaging »
Chris Junchi Li · Yaodong Yu · Nicolas Loizou · Gauthier Gidel · Yi Ma · Nicolas Le Roux perso · Michael Jordan -
2021 : GPU-Podracer: Scalable and Elastic Library for Cloud-Native Deep Reinforcement Learning »
Xiao-Yang Liu · Zhuoran Yang · Zhaoran Wang · Anwar Walid · Jian Guo · Michael Jordan -
2021 : Learning Two-Player Mixture Markov Games: Kernel Function Approximation and Correlated Equilibrium »
Chris Junchi Li · Dongruo Zhou · Quanquan Gu · Michael Jordan -
2021 : Desiderata for Representation Learning: A Causal Perspective »
Yixin Wang · Michael Jordan -
2022 Poster: Rank Diminishing in Deep Neural Networks »
Ruili Feng · Kecheng Zheng · Yukun Huang · Deli Zhao · Michael Jordan · Zheng-Jun Zha -
2022 : Nesterov Meets Optimism: Rate-Optimal Optimistic-Gradient-Based Method for Stochastic Bilinearly-Coupled Minimax Optimization »
Chris Junchi Li · Angela Yuan · Gauthier Gidel · Michael Jordan -
2022 : Solving Constrained Variational Inequalities via a First-order Interior Point-based Method »
Tong Yang · Michael Jordan · Tatjana Chavdarova -
2022 : Perseus: A Simple and Optimal High-Order Method for Variational Inequalities »
Tianyi Lin · Michael Jordan -
2022 : Towards Provably Personalized Federated Learning via Threshold-Clustering of Similar Clients »
Mariel A Werner · Lie He · Sai Praneeth Karimireddy · Michael Jordan · Martin Jaggi -
2022 : Valid Inference after Causal Discovery »
Paula Gradu · Tijana Zrnic · Yixin Wang · Michael Jordan -
2022 : A General Framework for Sample-Efficient Function Approximation in Reinforcement Learning »
Zixiang Chen · Chris Junchi Li · Angela Yuan · Quanquan Gu · Michael Jordan -
2022 : Advancing the participatory approach to AI in Mental Health »
Wilson Lee · Munmun De Choudhury · Morgan Scheuerman · Julia Hamer-Hunt · Dan Joyce · Nenad Tomasev · Kevin McKee · Shakir Mohamed · Danielle Belgrave · Christopher Burr -
2022 : Mechanisms that Incentivize Data Sharing in Federated Learning »
Sai Praneeth Karimireddy · Wenshuo Guo · Michael Jordan -
2022 Poster: Off-Policy Evaluation with Policy-Dependent Optimization Response »
Wenshuo Guo · Michael Jordan · Angela Zhou -
2022 Poster: First-Order Algorithms for Min-Max Optimization in Geodesic Metric Spaces »
Michael Jordan · Tianyi Lin · Emmanouil-Vasileios Vlatakis-Gkaragkounis -
2022 Poster: Learning Two-Player Markov Games: Neural Function Approximation and Correlated Equilibrium »
Chris Junchi Li · Dongruo Zhou · Quanquan Gu · Michael Jordan -
2022 Poster: Learn to Match with No Regret: Reinforcement Learning in Markov Matching Markets »
Yifei Min · Tianhao Wang · Ruitu Xu · Zhaoran Wang · Michael Jordan · Zhuoran Yang -
2022 Poster: Robust Calibration with Multi-domain Temperature Scaling »
Yaodong Yu · Stephen Bates · Yi Ma · Michael Jordan -
2022 Poster: On-Demand Sampling: Learning Optimally from Multiple Distributions »
Nika Haghtalab · Michael Jordan · Eric Zhao -
2022 Poster: Gradient-Free Methods for Deterministic and Stochastic Nonsmooth Nonconvex Optimization »
Tianyi Lin · Zeyu Zheng · Michael Jordan -
2022 Poster: TCT: Convexifying Federated Learning using Bootstrapped Neural Tangent Kernels »
Yaodong Yu · Alexander Wei · Sai Praneeth Karimireddy · Yi Ma · Michael Jordan -
2022 Poster: Empirical Gateaux Derivatives for Causal Inference »
Michael Jordan · Yixin Wang · Angela Zhou -
2021 Poster: Robust Learning of Optimal Auctions »
Wenshuo Guo · Michael Jordan · Emmanouil Zampetakis -
2021 Poster: Can we globally optimize cross-validation loss? Quasiconvexity in ridge regression »
Will Stephenson · Zachary Frangella · Madeleine Udell · Tamara Broderick -
2021 Poster: Learning in Multi-Stage Decentralized Matching Markets »
Xiaowu Dai · Michael Jordan -
2021 Poster: Who Leads and Who Follows in Strategic Classification? »
Tijana Zrnic · Eric Mazumdar · Shankar Sastry · Michael Jordan -
2021 Poster: Test-time Collective Prediction »
Celestine Mendler-Dünner · Wenshuo Guo · Stephen Bates · Michael Jordan -
2021 Poster: On the Theory of Reinforcement Learning with Once-per-Episode Feedback »
Niladri Chatterji · Aldo Pacchiano · Peter Bartlett · Michael Jordan -
2021 Poster: Wasserstein Flow Meets Replicator Dynamics: A Mean-Field Analysis of Representation Learning in Actor-Critic »
Yufeng Zhang · Siyu Chen · Zhuoran Yang · Michael Jordan · Zhaoran Wang -
2021 Poster: Tactical Optimism and Pessimism for Deep Reinforcement Learning »
Ted Moskovitz · Jack Parker-Holder · Aldo Pacchiano · Michael Arbel · Michael Jordan -
2021 Poster: For high-dimensional hierarchical models, consider exchangeability of effects across covariates instead of across datasets »
Brian Trippe · Hilary Finucane · Tamara Broderick -
2021 Poster: Neural Production Systems »
Anirudh Goyal · Aniket Didolkar · Nan Rosemary Ke · Charles Blundell · Philippe Beaudoin · Nicolas Heess · Michael Mozer · Yoshua Bengio -
2021 Poster: Learning Equilibria in Matching Markets from Bandit Feedback »
Meena Jagadeesan · Alexander Wei · Yixin Wang · Michael Jordan · Jacob Steinhardt -
2021 Poster: On Component Interactions in Two-Stage Recommender Systems »
Jiri Hron · Karl Krauth · Michael Jordan · Niki Kilbertus -
2020 : Contributed Talk 6: Do Offline Metrics Predict Online Performance in Recommender Systems? »
Karl Krauth · Sarah Dean · Wenshuo Guo · Benjamin Recht · Michael Jordan -
2020 : Panel Discussions »
Grace Lindsay · George Konidaris · Shakir Mohamed · Kimberly Stachenfeld · Peter Dayan · Yael Niv · Doina Precup · Catherine Hartley · Ishita Dasgupta -
2020 : Invited talk 1 QnA: Shakir Mohamed »
Shakir Mohamed · Feryal Behbahani · Raymond Chua -
2020 : Invited Talk #1 Shakir Mohamed : Pain and Machine Learning »
Shakir Mohamed -
2020 : Q&A with Shakir »
Shakir Mohamed -
2020 : Invited: Shakir Mohamed »
Shakir Mohamed -
2020 Poster: Projection Robust Wasserstein Distance and Riemannian Optimization »
Tianyi Lin · Chenyou Fan · Nhat Ho · Marco Cuturi · Michael Jordan -
2020 Poster: Fixed-Support Wasserstein Barycenters: Computational Hardness and Fast Algorithm »
Tianyi Lin · Nhat Ho · Xi Chen · Marco Cuturi · Michael Jordan -
2020 Spotlight: Projection Robust Wasserstein Distance and Riemannian Optimization »
Tianyi Lin · Chenyou Fan · Nhat Ho · Marco Cuturi · Michael Jordan -
2020 Poster: Decision-Making with Auto-Encoding Variational Bayes »
Romain Lopez · Pierre Boyeau · Nir Yosef · Michael Jordan · Jeffrey Regier -
2020 Poster: Pointer Graph Networks »
Petar Veličković · Lars Buesing · Matthew Overlan · Razvan Pascanu · Oriol Vinyals · Charles Blundell -
2020 Spotlight: Pointer Graph Networks »
Petar Veličković · Lars Buesing · Matthew Overlan · Razvan Pascanu · Oriol Vinyals · Charles Blundell -
2020 Session: Orals & Spotlights Track 25: Probabilistic Models/Statistics »
Marc Deisenroth · Matthew D. Hoffman -
2020 Poster: Transferable Calibration with Lower Bias and Variance in Domain Adaptation »
Ximei Wang · Mingsheng Long · Jianmin Wang · Michael Jordan -
2020 Poster: Robust Optimization for Fairness with Noisy Protected Groups »
Serena Wang · Wenshuo Guo · Harikrishna Narasimhan · Andrew Cotter · Maya Gupta · Michael Jordan -
2020 : Policy Panel »
Roya Pakzad · Dia Kayyali · Marzyeh Ghassemi · Shakir Mohamed · Mohammad Norouzi · Ted Pedersen · Anver Emon · Abubakar Abid · Darren Byler · Samhaa R. El-Beltagy · Nayel Shafei · Mona Diab -
2020 Poster: On the Theory of Transfer Learning: The Importance of Task Diversity »
Nilesh Tripuraneni · Michael Jordan · Chi Jin -
2020 Affinity Workshop: Muslims in ML »
Marzyeh Ghassemi · Mohammad Norouzi · Shakir Mohamed · Aya Salama · Tasmie Sarker -
2020 Poster: On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces »
Zhuoran Yang · Chi Jin · Zhaoran Wang · Mengdi Wang · Michael Jordan -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2019 Poster: Generalization of Reinforcement Learners with Working and Episodic Memory »
Meire Fortunato · Melissa Tan · Ryan Faulkner · Steven Hansen · Adrià Puigdomènech Badia · Gavin Buttimore · Charles Deck · Joel Leibo · Charles Blundell -
2019 Poster: Training Language GANs from Scratch »
Cyprien de Masson d'Autume · Shakir Mohamed · Mihaela Rosca · Jack Rae -
2019 Poster: Transferable Normalization: Towards Improving Transferability of Deep Neural Networks »
Ximei Wang · Ying Jin · Mingsheng Long · Jianmin Wang · Michael Jordan -
2019 Poster: Acceleration via Symplectic Discretization of High-Resolution Differential Equations »
Bin Shi · Simon Du · Weijie Su · Michael Jordan -
2018 Poster: Gen-Oja: Simple & Efficient Algorithm for Streaming Generalized Eigenvector Computation »
Kush Bhatia · Aldo Pacchiano · Nicolas Flammarion · Peter Bartlett · Michael Jordan -
2018 Poster: Implicit Reparameterization Gradients »
Mikhail Figurnov · Shakir Mohamed · Andriy Mnih -
2018 Poster: Theoretical guarantees for EM under misspecified Gaussian mixture models »
Raaz Dwivedi · nhật Hồ · Koulik Khamaru · Martin Wainwright · Michael Jordan -
2018 Poster: Autoconj: Recognizing and Exploiting Conjugacy Without a Domain-Specific Language »
Matthew D. Hoffman · Matthew Johnson · Dustin Tran -
2018 Spotlight: Implicit Reparameterization Gradients »
Mikhail Figurnov · Shakir Mohamed · Andriy Mnih -
2018 Poster: Stochastic Cubic Regularization for Fast Nonconvex Optimization »
Nilesh Tripuraneni · Mitchell Stern · Chi Jin · Jeffrey Regier · Michael Jordan -
2018 Poster: On the Local Minima of the Empirical Risk »
Chi Jin · Lydia T. Liu · Rong Ge · Michael Jordan -
2018 Spotlight: On the Local Minima of the Empirical Risk »
Chi Jin · Lydia T. Liu · Rong Ge · Michael Jordan -
2018 Oral: Stochastic Cubic Regularization for Fast Nonconvex Optimization »
Nilesh Tripuraneni · Mitchell Stern · Chi Jin · Jeffrey Regier · Michael Jordan -
2018 Poster: Is Q-Learning Provably Efficient? »
Chi Jin · Zeyuan Allen-Zhu · Sebastien Bubeck · Michael Jordan -
2018 Poster: Fast deep reinforcement learning using online adjustments from the past »
Steven Hansen · Alexander Pritzel · Pablo Sprechmann · Andre Barreto · Charles Blundell -
2018 Poster: Information Constraints on Auto-Encoding Variational Bayes »
Romain Lopez · Jeffrey Regier · Michael Jordan · Nir Yosef -
2018 Poster: Conditional Adversarial Domain Adaptation »
Mingsheng Long · ZHANGJIE CAO · Jianmin Wang · Michael Jordan -
2018 Poster: Generalized Zero-Shot Learning with Deep Calibration Network »
Shichen Liu · Mingsheng Long · Jianmin Wang · Michael Jordan -
2017 : Panel: On the Foundations and Future of Approximate Inference »
David Blei · Zoubin Ghahramani · Katherine Heller · Tim Salimans · Max Welling · Matthew D. Hoffman -
2017 Poster: Fast Black-box Variational Inference through Stochastic Trust-Region Optimization »
Jeffrey Regier · Michael Jordan · Jon McAuliffe -
2017 Poster: Online control of the false discovery rate with decaying memory »
Aaditya Ramdas · Fanny Yang · Martin Wainwright · Michael Jordan -
2017 Poster: Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles »
Balaji Lakshminarayanan · Alexander Pritzel · Charles Blundell -
2017 Spotlight: Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles »
Balaji Lakshminarayanan · Alexander Pritzel · Charles Blundell -
2017 Spotlight: Fast Black-box Variational Inference through Stochastic Trust-Region Optimization »
Jeffrey Regier · Michael Jordan · Jon McAuliffe -
2017 Oral: Online control of the false discovery rate with decaying memory »
Aaditya Ramdas · Fanny Yang · Martin Wainwright · Michael Jordan -
2017 Poster: Gradient Descent Can Take Exponential Time to Escape Saddle Points »
Simon Du · Chi Jin · Jason D Lee · Michael Jordan · Aarti Singh · Barnabas Poczos -
2017 Spotlight: Gradient Descent Can Take Exponential Time to Escape Saddle Points »
Simon Du · Chi Jin · Jason D Lee · Michael Jordan · Aarti Singh · Barnabas Poczos -
2017 Poster: Non-convex Finite-Sum Optimization Via SCSG Methods »
Lihua Lei · Cheng Ju · Jianbo Chen · Michael Jordan -
2017 Poster: Kernel Feature Selection via Conditional Covariance Minimization »
Jianbo Chen · Mitchell Stern · Martin J Wainwright · Michael Jordan -
2016 : Panel Discussion »
Shakir Mohamed · David Blei · Ryan Adams · José Miguel Hernández-Lobato · Ian Goodfellow · Yarin Gal -
2016 : Bayesian Agents: Bayesian Reasoning and Deep Learning in Agent-based Systems »
Shakir Mohamed -
2016 Workshop: Advances in Approximate Bayesian Inference »
Tamara Broderick · Stephan Mandt · James McInerney · Dustin Tran · David Blei · Kevin Murphy · Andrew Gelman · Michael I Jordan -
2016 Poster: Unsupervised Learning of 3D Structure from Images »
Danilo Jimenez Rezende · S. M. Ali Eslami · Shakir Mohamed · Peter Battaglia · Max Jaderberg · Nicolas Heess -
2016 Poster: Cyclades: Conflict-free Asynchronous Machine Learning »
Xinghao Pan · Maximilian Lam · Stephen Tu · Dimitris Papailiopoulos · Ce Zhang · Michael Jordan · Kannan Ramchandran · Christopher Ré · Benjamin Recht -
2016 Poster: Unsupervised Domain Adaptation with Residual Transfer Networks »
Mingsheng Long · Han Zhu · Jianmin Wang · Michael Jordan -
2016 Poster: Local Maxima in the Likelihood of Gaussian Mixture Models: Structural Results and Algorithmic Consequences »
Chi Jin · Yuchen Zhang · Sivaraman Balakrishnan · Martin J Wainwright · Michael Jordan -
2016 Poster: Matching Networks for One Shot Learning »
Oriol Vinyals · Charles Blundell · Timothy Lillicrap · koray kavukcuoglu · Daan Wierstra -
2016 Poster: Deep Exploration via Bootstrapped DQN »
Ian Osband · Charles Blundell · Alexander Pritzel · Benjamin Van Roy -
2016 Tutorial: Variational Inference: Foundations and Modern Methods »
David Blei · Shakir Mohamed · Rajesh Ranganath -
2015 Workshop: Advances in Approximate Bayesian Inference »
Dustin Tran · Tamara Broderick · Stephan Mandt · James McInerney · Shakir Mohamed · Alp Kucukelbir · Matthew D. Hoffman · Neil Lawrence · David Blei -
2015 Poster: Variational Consensus Monte Carlo »
Maxim Rabinovich · Elaine Angelino · Michael Jordan -
2015 Poster: On the Accuracy of Self-Normalized Log-Linear Models »
Jacob Andreas · Maxim Rabinovich · Michael Jordan · Dan Klein -
2015 Poster: Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes »
Ryan Giordano · Tamara Broderick · Michael Jordan -
2015 Spotlight: Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes »
Ryan Giordano · Tamara Broderick · Michael Jordan -
2015 Poster: Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning »
Shakir Mohamed · Danilo Jimenez Rezende -
2014 Poster: A Filtering Approach to Stochastic Variational Inference »
Neil Houlsby · David Blei -
2014 Poster: Communication-Efficient Distributed Dual Coordinate Ascent »
Martin Jaggi · Virginia Smith · Martin Takac · Jonathan Terhorst · Sanjay Krishnan · Thomas Hofmann · Michael Jordan -
2014 Poster: Smoothed Gradients for Stochastic Variational Inference »
Stephan Mandt · David Blei -
2014 Poster: Spectral Methods meet EM: A Provably Optimal Algorithm for Crowdsourcing »
Yuchen Zhang · Xi Chen · Denny Zhou · Michael Jordan -
2014 Poster: Parallel Double Greedy Submodular Maximization »
Xinghao Pan · Stefanie Jegelka · Joseph Gonzalez · Joseph K Bradley · Michael Jordan -
2014 Spotlight: Spectral Methods meet EM: A Provably Optimal Algorithm for Crowdsourcing »
Yuchen Zhang · Xi Chen · Denny Zhou · Michael Jordan -
2014 Poster: Semi-supervised Learning with Deep Generative Models »
Diederik Kingma · Shakir Mohamed · Danilo Jimenez Rezende · Max Welling -
2014 Poster: Content-based recommendations with Poisson factorization »
Prem Gopalan · Laurent Charlin · David Blei -
2014 Spotlight: Semi-supervised Learning with Deep Generative Models »
Diederik Kingma · Shakir Mohamed · Danilo Jimenez Rezende · Max Welling -
2014 Poster: On the Convergence Rate of Decomposable Submodular Function Minimization »
Robert Nishihara · Stefanie Jegelka · Michael Jordan -
2013 Workshop: Topic Models: Computation, Application, and Evaluation »
David Mimno · Amr Ahmed · Jordan Boyd-Graber · Ankur Moitra · Hanna Wallach · Alexander Smola · David Blei · Anima Anandkumar -
2013 Workshop: Big Learning : Advances in Algorithms and Data Management »
Xinghao Pan · Haijie Gu · Joseph Gonzalez · Sameer Singh · Yucheng Low · Joseph Hellerstein · Derek G Murray · Raghu Ramakrishnan · Michael Jordan · Christopher Ré -
2013 Workshop: Discrete Optimization in Machine Learning: Connecting Theory and Practice »
Stefanie Jegelka · Andreas Krause · Pradeep Ravikumar · Kazuo Murota · Jeffrey A Bilmes · Yisong Yue · Michael Jordan -
2013 Workshop: Probabilistic Models for Big Data »
Neil D Lawrence · Joaquin Quiñonero-Candela · Tianshi Gao · James Hensman · Zoubin Ghahramani · Max Welling · David Blei · Ralf Herbrich -
2013 Session: Oral Session 10 »
Michael Jordan -
2013 Poster: A Comparative Framework for Preconditioned Lasso Algorithms »
Fabian L Wauthier · Nebojsa Jojic · Michael Jordan -
2013 Poster: Information-theoretic lower bounds for distributed statistical estimation with communication constraints »
Yuchen Zhang · John Duchi · Michael Jordan · Martin J Wainwright -
2013 Oral: Information-theoretic lower bounds for distributed statistical estimation with communication constraints »
Yuchen Zhang · John Duchi · Michael Jordan · Martin J Wainwright -
2013 Poster: Efficient Online Inference for Bayesian Nonparametric Relational Models »
Dae Il Kim · Prem Gopalan · David Blei · Erik Sudderth -
2013 Poster: Optimistic Concurrency Control for Distributed Unsupervised Learning »
Xinghao Pan · Joseph Gonzalez · Stefanie Jegelka · Tamara Broderick · Michael Jordan -
2013 Poster: Bayesian Hierarchical Community Discovery »
Charles Blundell · Yee Whye Teh -
2013 Poster: Local Privacy and Minimax Bounds: Sharp Rates for Probability Estimation »
John Duchi · Martin J Wainwright · Michael Jordan -
2013 Poster: Streaming Variational Bayes »
Tamara Broderick · Nicholas Boyd · Andre Wibisono · Ashia C Wilson · Michael Jordan -
2013 Poster: Estimation, Optimization, and Parallelism when Data is Sparse »
John Duchi · Michael Jordan · Brendan McMahan -
2013 Poster: Modeling Overlapping Communities with Node Popularities »
Prem Gopalan · Chong Wang · David Blei -
2012 Workshop: Bayesian Nonparametric Models For Reliable Planning And Decision-Making Under Uncertainty »
Jonathan How · Lawrence Carin · John Fisher III · Michael Jordan · Alborz Geramifard -
2012 Workshop: Bayesian Optimization and Decision Making »
Javad Azimi · Roman Garnett · Frank R Hutter · Shakir Mohamed -
2012 Poster: Truncation-free Online Variational Inference for Bayesian Nonparametric Models »
Chong Wang · David Blei -
2012 Poster: Privacy Aware Learning »
John Duchi · Michael Jordan · Martin J Wainwright -
2012 Poster: Scalable Inference of Overlapping Communities »
Prem Gopalan · David Mimno · Sean Gerrish · Michael Freedman · David Blei -
2012 Poster: Ancestor Sampling for Particle Gibbs »
Fredrik Lindsten · Michael Jordan · Thomas Schön -
2012 Poster: Modelling Reciprocating Relationships with Hawkes processes »
Charles Blundell · Katherine Heller · Jeff Beck -
2012 Spotlight: Scalable Inference of Overlapping Communities »
Prem Gopalan · David Mimno · Sean Gerrish · Michael Freedman · David Blei -
2012 Oral: Privacy Aware Learning »
John Duchi · Michael Jordan · Martin J Wainwright -
2012 Poster: Expectation Propagation in Gaussian Process Dynamical Systems »
Marc Deisenroth · Shakir Mohamed -
2012 Poster: Finite Sample Convergence Rates of Zero-Order Stochastic Optimization Methods »
John Duchi · Michael Jordan · Martin J Wainwright · Andre Wibisono -
2012 Poster: Fast Bayesian Inference for Non-Conjugate Gaussian Process Regression »
Mohammad Emtiyaz Khan · Shakir Mohamed · Kevin Murphy -
2012 Poster: Small-Variance Asymptotics for Exponential Family Dirichlet Process Mixture Models »
Ke Jiang · Brian Kulis · Michael Jordan -
2012 Spotlight: Modelling Reciprocating Relationships with Hawkes processes »
Charles Blundell · Katherine Heller · Jeff Beck -
2012 Poster: How They Vote: Issue-Adjusted Models of Legislative Behavior »
Sean Gerrish · David Blei -
2011 Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale »
Joseph E Gonzalez · Sameer Singh · Graham Taylor · James Bergstra · Alice Zheng · Misha Bilenko · Yucheng Low · Yoshua Bengio · Michael Franklin · Carlos Guestrin · Andrew McCallum · Alexander Smola · Michael Jordan · Sugato Basu -
2011 Poster: Bayesian Bias Mitigation for Crowdsourcing »
Fabian L Wauthier · Michael Jordan -
2011 Poster: Divide-and-Conquer Matrix Factorization »
Lester W Mackey · Ameet S Talwalkar · Michael Jordan -
2011 Poster: Modelling Genetic Variations using Fragmentation-Coagulation Processes »
Yee Whye Teh · Charles Blundell · Lloyd T Elliott -
2011 Oral: Modelling Genetic Variations using Fragmentation-Coagulation Processes »
Yee Whye Teh · Charles Blundell · Lloyd T Elliott -
2011 Poster: Spatial distance dependent Chinese Restaurant Process for image segmentation »
Soumya Ghosh · Andrei B Ungureanu · Erik Sudderth · David Blei -
2010 Session: Oral Session 18 »
David Blei -
2010 Oral: Tree-Structured Stick Breaking for Hierarchical Data »
Ryan Adams · Zoubin Ghahramani · Michael Jordan -
2010 Invited Talk: Statistical Inference of Protein Structure and Function »
Michael Jordan -
2010 Spotlight: Online Learning for Latent Dirichlet Allocation »
Matthew D. Hoffman · David Blei · Francis Bach -
2010 Poster: Tree-Structured Stick Breaking for Hierarchical Data »
Ryan Adams · Zoubin Ghahramani · Michael Jordan -
2010 Poster: Online Learning for Latent Dirichlet Allocation »
Matthew D. Hoffman · David Blei · Francis Bach -
2010 Spotlight: Variational Inference over Combinatorial Spaces »
Alexandre Bouchard-Côté · Michael Jordan -
2010 Poster: Variational Inference over Combinatorial Spaces »
Alexandre Bouchard-Côté · Michael Jordan -
2010 Poster: Nonparametric Density Estimation for Stochastic Optimization with an Observable State Variable »
Lauren A Hannah · Warren B Powell · David Blei -
2010 Poster: Unsupervised Kernel Dimension Reduction »
Meihong Wang · Fei Sha · Michael Jordan -
2010 Poster: Heavy-Tailed Process Priors for Selective Shrinkage »
Fabian L Wauthier · Michael Jordan -
2010 Poster: Random Conic Pursuit for Semidefinite Programming »
Ariel Kleiner · ali rahimi · Michael Jordan -
2009 Workshop: Nonparametric Bayes »
Dilan Gorur · Francois Caron · Yee Whye Teh · David B Dunson · Zoubin Ghahramani · Michael Jordan -
2009 Workshop: Applications for Topic Models: Text and Beyond »
David Blei · Jordan Boyd-Graber · Jonathan Chang · Katherine Heller · Hanna Wallach -
2009 Poster: Reading Tea Leaves: How Humans Interpret Topic Models »
Jonathan Chang · Jordan Boyd-Graber · Sean Gerrish · Chong Wang · David Blei -
2009 Poster: Sharing Features among Dynamical Systems with Beta Processes »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2009 Oral: Sharing Features among Dynamical Systems with Beta Processes »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2009 Oral: Reading Tea Leaves: How Humans Interpret Topic Models »
Jonathan Chang · Jordan Boyd-Graber · Sean Gerrish · Chong Wang · David Blei -
2009 Poster: Decoupling Sparsity and Smoothness in the Discrete Hierarchical Dirichlet Process »
Chong Wang · David Blei -
2009 Spotlight: Decoupling Sparsity and Smoothness in the Discrete Hierarchical Dirichlet Process »
Chong Wang · David Blei -
2009 Poster: Variational Inference for the Nested Chinese Restaurant Process »
Chong Wang · David Blei -
2009 Poster: A Bayesian Analysis of Dynamics in Free Recall »
Richard Socher · Samuel J Gershman · Adler Perotte · Per Sederberg · David Blei · Kenneth Norman -
2009 Poster: Asymptotically Optimal Regularization in Smooth Parametric Models »
Percy Liang · Francis Bach · Guillaume Bouchard · Michael Jordan -
2009 Poster: Large Scale Nonparametric Bayesian Inference: Data Parallelisation in the Indian Buffet Process »
Shakir Mohamed · David A Knowles · Zoubin Ghahramani · Finale P Doshi-Velez -
2009 Poster: Nonparametric Latent Feature Models for Link Prediction »
Kurt T Miller · Tom Griffiths · Michael Jordan -
2009 Spotlight: Nonparametric Latent Feature Models for Link Prediction »
Kurt T Miller · Tom Griffiths · Michael Jordan -
2008 Workshop: Analyzing Graphs: Theory and Applications »
Edo M Airoldi · David Blei · Jake M Hofman · Tony Jebara · Eric Xing -
2008 Oral: Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes »
Erik Sudderth · Michael Jordan -
2008 Poster: Mixed Membership Stochastic Blockmodels »
Edo M Airoldi · David Blei · Stephen E Fienberg · Eric Xing -
2008 Poster: Nonparametric Bayesian Learning of Switching Linear Dynamical Systems »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2008 Poster: Bayesian Exponential Family PCA »
Shakir Mohamed · Katherine Heller · Zoubin Ghahramani -
2008 Poster: High-dimensional union support recovery in multivariate regression »
Guillaume R Obozinski · Martin J Wainwright · Michael Jordan -
2008 Poster: Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes »
Erik Sudderth · Michael Jordan -
2008 Spotlight: Bayesian Exponential Family PCA »
Shakir Mohamed · Katherine Heller · Zoubin Ghahramani -
2008 Spotlight: High-dimensional union support recovery in multivariate regression »
Guillaume R Obozinski · Martin J Wainwright · Michael Jordan -
2008 Spotlight: Mixed Membership Stochastic Blockmodels »
Edo M Airoldi · David Blei · Stephen E Fienberg · Eric Xing -
2008 Spotlight: Nonparametric Bayesian Learning of Switching Linear Dynamical Systems »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2008 Poster: Posterior Consistency of the Silverman g-prior in Bayesian Model Choice »
Zhihua Zhang · Michael Jordan · Dit-Yan Yeung -
2008 Poster: DiscLDA: Discriminative Learning for Dimensionality Reduction and Classification »
Simon Lacoste-Julien · Fei Sha · Michael Jordan -
2008 Spotlight: Posterior Consistency of the Silverman g-prior in Bayesian Model Choice »
Zhihua Zhang · Michael Jordan · Dit-Yan Yeung -
2008 Poster: Syntactic Topic Models »
Jordan Boyd-Graber · David Blei -
2008 Poster: Relative Performance Guarantees for Approximate Inference in Latent Dirichlet Allocation »
Indraneel Mukherjee · David Blei -
2008 Poster: Efficient Inference in Phylogenetic InDel Trees »
Alexandre Bouchard-Côté · Michael Jordan · Dan Klein -
2008 Poster: Spectral Clustering with Perturbed Data »
Ling Huang · Donghui Yan · Michael Jordan · Nina Taft -
2008 Spotlight: Syntactic Topic Models »
Jordan Boyd-Graber · David Blei -
2008 Spotlight: Efficient Inference in Phylogenetic InDel Trees »
Alexandre Bouchard-Côté · Michael Jordan · Dan Klein -
2008 Spotlight: Relative Performance Guarantees for Approximate Inference in Latent Dirichlet Allocation »
Indraneel Mukherjee · David Blei -
2008 Spotlight: Spectral Clustering with Perturbed Data »
Ling Huang · Donghui Yan · Michael Jordan · Nina Taft -
2007 Poster: Agreement-Based Learning »
Percy Liang · Dan Klein · Michael Jordan -
2007 Spotlight: Agreement-Based Learning »
Percy Liang · Dan Klein · Michael Jordan -
2007 Spotlight: Resampling Methods for Protein Structure Prediction with Rosetta »
Ben Blum · David Baker · Michael Jordan · Philip Bradley · Rhiju Das · David Kim -
2007 Spotlight: Estimating divergence functionals and the likelihood ratio by penalized convex risk minimization »
XuanLong Nguyen · Martin J Wainwright · Michael Jordan -
2007 Poster: Resampling Methods for Protein Structure Prediction with Rosetta »
Ben Blum · David Baker · Michael Jordan · Philip Bradley · Rhiju Das · David Kim -
2007 Poster: Estimating divergence functionals and the likelihood ratio by penalized convex risk minimization »
XuanLong Nguyen · Martin J Wainwright · Michael Jordan -
2007 Poster: Supervised Topic Models »
David Blei · Jon McAuliffe -
2006 Poster: Distributed PCA and Network Anomaly Detection »
Ling Huang · XuanLong Nguyen · Minos Garofalakis · Michael Jordan · Anthony D Joseph · Nina Taft