Timezone: »
Beginning with the introduction of graphical games and related models, there is now a rich body of algorithmic connections between probabilistic inference, game theory and microeconomics. Strategic analogues of belief propagation and other inference techniques have been developed for the computation of Nash, correlated and market equilibria, and have played a significant role in the evolution of algorithmic game theory over the past decade.
There are also important points of departure between probabilistic and strategic graphical models — perhaps most notably that in the latter, vertices are not random variables, but self-interested humans or organizations. It is thus natural to wonder how social network structures might influence equilibrium outcomes such as social welfare or the relative wealth and power of individuals. One logical path that such questions lead to is human-subject experiments on strategic interaction in social networks.
Author Information
Michael Kearns (University of Pennsylvania)
Michael Kearns is Professor and National Center Chair in the Computer and Information Science department at the University of Pennsylvania. His research interests include topics in machine learning, algorithmic game theory, social networks, and computational finance. Prior to joining the Penn faculty, he spent a decade at AT&T/Bell Labs, where he was head of AI Research. He is co-director of Penn’s Warren Center for Network and Data Sciences (warrencenter.upenn.edu), and founder of Penn’s Networked and Social Systems Engineering (NETS) undergraduate program (www.nets.upenn.edu). Kearns consults extensively in technology and finance, and is a Fellow of the Association for the Advancement of Artificial Intelligence and the American Academy of Arts and Sciences.
More from the Same Authors
-
2022 : Differentially Private Gradient Boosting on Linear Learners for Tabular Data »
Saeyoung Rho · Shuai Tang · Sergul Aydore · Michael Kearns · Aaron Roth · Yu-Xiang Wang · Steven Wu · Cedric Archambeau -
2022 Poster: Private Synthetic Data for Multitask Learning and Marginal Queries »
Giuseppe Vietri · Cedric Archambeau · Sergul Aydore · William Brown · Michael Kearns · Aaron Roth · Ankit Siva · Shuai Tang · Steven Wu -
2020 : Invited Talk 7:Fair Portfolio Design »
Michael Kearns -
2020 : Keynote: Michael Kearns »
Michael Kearns -
2019 Poster: Average Individual Fairness: Algorithms, Generalization and Experiments »
Saeed Sharifi-Malvajerdi · Michael Kearns · Aaron Roth -
2019 Oral: Average Individual Fairness: Algorithms, Generalization and Experiments »
Saeed Sharifi-Malvajerdi · Michael Kearns · Aaron Roth -
2018 : Invited Talk 3: Fairness in Allocation Problems »
Michael Kearns -
2018 Poster: Online Learning with an Unknown Fairness Metric »
Stephen Gillen · Christopher Jung · Michael Kearns · Aaron Roth -
2016 Poster: Fairness in Learning: Classic and Contextual Bandits »
Matthew Joseph · Michael Kearns · Jamie Morgenstern · Aaron Roth -
2013 Poster: Marginals-to-Models Reducibility »
Tim Roughgarden · Michael Kearns -
2007 Spotlight: Privacy-Preserving Belief Propagation and Sampling »
Michael Kearns · Jinsong Tan · Jennifer Wortman Vaughan -
2007 Poster: Privacy-Preserving Belief Propagation and Sampling »
Michael Kearns · Jinsong Tan · Jennifer Wortman Vaughan -
2006 Poster: Learning from Multiple Sources »
Yacov Crammer · Michael Kearns · Jennifer Wortman Vaughan -
2006 Poster: A Small World Threshold for Economic Network Formation »
Eyal Even-Dar · Michael Kearns