Timezone: »
Demonstration
Topic Modeling for Robots
Yogesh A Girdhar · Gregory Dudek
Sat Dec 07 07:00 PM -- 11:59 PM (PST) @ Tahoe A, Harrah’s Special Events Center 2nd Floor
Event URL: http://cim.mcgill.ca/~yogesh/rost/ »
ROST is a realtime online spatiotemporal topic modeling framework for data such as streaming video and audio observed by a robot, where topics represent the latent causes that produce these observations. When new observations are made, we not only compute its topic labels, but also use it to update the global topic model and the labels of older observations, resulting in a consistent semantic description of the scene without the use of any prior knowledge. The proposed approximations have constant update time as new data is observed, which allows for the technique to work in real-time; a critical requirement for its use in the robotics.
Author Information
Yogesh A Girdhar (Woods Hole Oceanographic Institution / Samsung Research)
Gregory Dudek (McGill University & Samsung Research)
More from the Same Authors
-
2021 : IL-flOw: Imitation Learning from Observation using Normalizing Flows »
Wei-Di Chang · Juan Camilo Gamboa Higuera · Scott Fujimoto · David Meger · Gregory Dudek -
2022 : Bayesian Q-learning With Imperfect Expert Demonstrations »
Fengdi Che · Xiru Zhu · Doina Precup · David Meger · Gregory Dudek -
2022 : Bayesian Q-learning With Imperfect Expert Demonstrations »
Fengdi Che · Xiru Zhu · Doina Precup · David Meger · Gregory Dudek -
2020 : Q/A and Discussion for Sensing & Sampling Session »
Johanna Hansen · Yogesh A Girdhar · Hannah Kerner · Renaud Detry -
2020 : Yogesh Girdhar - Enabling Vision Guided Interactive Exploration in Bandwidth Limited Environments »
Yogesh A Girdhar -
2020 Workshop: AI for Earth Sciences »
Surya Karthik Mukkavilli · Johanna Hansen · Natasha Dudek · Tom Beucler · Kelly Kochanski · Mayur Mudigonda · Karthik Kashinath · Amy McGovern · Paul D Miller · Chad Frischmann · Pierre Gentine · Gregory Dudek · Aaron Courville · Daniel Kammen · Vipin Kumar