Timezone: »
Spotlight
Robust Sparse Principal Component Regression under the High Dimensional Elliptical Model
Fang Han · Han Liu
Fri Dec 06 11:56 AM -- 12:00 PM (PST) @ Harvey's Convention Center Floor, CC
In this paper we focus on the principal component regression and its application to high dimension non-Gaussian data. The major contributions are in two folds. First, in low dimensions and under a double asymptotic framework where both the dimension $d$ and sample size $n$ can increase, by borrowing the strength from recent development in minimax optimal principal component estimation, we first time sharply characterize the potential advantage of classical principal component regression over least square estimation under the Gaussian model. Secondly, we propose and analyze a new robust sparse principal component regression on high dimensional elliptically distributed data. The elliptical distribution is a semiparametric generalization of the Gaussian, including many well known distributions such as multivariate Gaussian, rank-deficient Gaussian, $t$, Cauchy, and logistic. It allows the random vector to be heavy tailed and have tail dependence. These extra flexibilities make it very suitable for modeling finance and biomedical imaging data. Under the elliptical model, we prove that our method can estimate the regression coefficients in the optimal parametric rate and therefore is a good alternative to the Gaussian based methods. Experiments on synthetic and real world data are conducted to illustrate the empirical usefulness of the proposed method.
Author Information
Fang Han (Johns Hopkins University)
Han Liu (Tencent AI Lab)
Related Events (a corresponding poster, oral, or spotlight)
-
2013 Poster: Robust Sparse Principal Component Regression under the High Dimensional Elliptical Model »
Sat. Dec 7th 03:00 -- 07:59 AM Room Harrah's Special Events Center, 2nd Floor
More from the Same Authors
-
2018 Poster: Exponentially Weighted Imitation Learning for Batched Historical Data »
Qing Wang · Jiechao Xiong · Lei Han · peng sun · Han Liu · Tong Zhang -
2017 Poster: Estimating High-dimensional Non-Gaussian Multiple Index Models via Stein’s Lemma »
Zhuoran Yang · Krishnakumar Balasubramanian · Zhaoran Wang · Han Liu -
2017 Poster: Parametric Simplex Method for Sparse Learning »
Haotian Pang · Han Liu · Robert J Vanderbei · Tuo Zhao -
2016 Workshop: Adaptive and Scalable Nonparametric Methods in Machine Learning »
Aaditya Ramdas · Arthur Gretton · Bharath Sriperumbudur · Han Liu · John Lafferty · Samory Kpotufe · Zoltán Szabó -
2016 Poster: Agnostic Estimation for Misspecified Phase Retrieval Models »
Matey Neykov · Zhaoran Wang · Han Liu -
2016 Poster: Online ICA: Understanding Global Dynamics of Nonconvex Optimization via Diffusion Processes »
Chris Junchi Li · Zhaoran Wang · Han Liu -
2016 Poster: Blind Attacks on Machine Learners »
Alex Beatson · Zhaoran Wang · Han Liu -
2016 Poster: More Supervision, Less Computation: Statistical-Computational Tradeoffs in Weakly Supervised Learning »
Xinyang Yi · Zhaoran Wang · Zhuoran Yang · Constantine Caramanis · Han Liu -
2015 Poster: Optimal Linear Estimation under Unknown Nonlinear Transform »
Xinyang Yi · Zhaoran Wang · Constantine Caramanis · Han Liu -
2015 Poster: Non-convex Statistical Optimization for Sparse Tensor Graphical Model »
Wei Sun · Zhaoran Wang · Han Liu · Guang Cheng -
2015 Poster: Local Smoothness in Variance Reduced Optimization »
Daniel Vainsencher · Han Liu · Tong Zhang -
2015 Poster: High Dimensional EM Algorithm: Statistical Optimization and Asymptotic Normality »
Zhaoran Wang · Quanquan Gu · Yang Ning · Han Liu -
2015 Poster: Robust Portfolio Optimization »
Huitong Qiu · Fang Han · Han Liu · Brian Caffo -
2015 Poster: A Nonconvex Optimization Framework for Low Rank Matrix Estimation »
Tuo Zhao · Zhaoran Wang · Han Liu -
2014 Workshop: Modern Nonparametrics 3: Automating the Learning Pipeline »
Eric Xing · Mladen Kolar · Arthur Gretton · Samory Kpotufe · Han Liu · Zoltán Szabó · Alan Yuille · Andrew G Wilson · Ryan Tibshirani · Sasha Rakhlin · Damian Kozbur · Bharath Sriperumbudur · David Lopez-Paz · Kirthevasan Kandasamy · Francesco Orabona · Andreas Damianou · Wacha Bounliphone · Yanshuai Cao · Arijit Das · Yingzhen Yang · Giulia DeSalvo · Dmitry Storcheus · Roberto Valerio -
2014 Poster: Mode Estimation for High Dimensional Discrete Tree Graphical Models »
Chao Chen · Han Liu · Dimitris Metaxas · Tianqi Zhao -
2014 Poster: Accelerated Mini-batch Randomized Block Coordinate Descent Method »
Tuo Zhao · Mo Yu · Yiming Wang · Raman Arora · Han Liu -
2014 Poster: Multivariate Regression with Calibration »
Han Liu · Lie Wang · Tuo Zhao -
2014 Poster: Sparse PCA with Oracle Property »
Quanquan Gu · Zhaoran Wang · Han Liu -
2014 Spotlight: Mode Estimation for High Dimensional Discrete Tree Graphical Models »
Chao Chen · Han Liu · Dimitris Metaxas · Tianqi Zhao -
2014 Poster: Tighten after Relax: Minimax-Optimal Sparse PCA in Polynomial Time »
Zhaoran Wang · Huanran Lu · Han Liu -
2013 Workshop: Modern Nonparametric Methods in Machine Learning »
Arthur Gretton · Mladen Kolar · Samory Kpotufe · John Lafferty · Han Liu · Bernhard Schölkopf · Alexander Smola · Rob Nowak · Mikhail Belkin · Lorenzo Rosasco · peter bickel · Yue Zhao -
2013 Poster: Sparse Inverse Covariance Estimation with Calibration »
Tuo Zhao · Han Liu -
2012 Workshop: Modern Nonparametric Methods in Machine Learning »
Sivaraman Balakrishnan · Arthur Gretton · Mladen Kolar · John Lafferty · Han Liu · Tong Zhang -
2012 Poster: TCA: High Dimensional Principal Component Analysis for non-Gaussian Data »
Fang Han · Han Liu -
2012 Poster: High Dimensional Semiparametric Scale-invariant Principal Component Analysis »
Fang Han · Han Liu -
2012 Poster: High Dimensional Transelliptical Graphical Models »
Han Liu · Fang Han -
2012 Oral: TCA: High Dimensional Principal Component Analysis for non-Gaussian Data »
Fang Han · Han Liu -
2012 Poster: High-dimensional Nonparanormal Graph Estimation via Smooth-projected Neighborhood Pursuit »
Tuo Zhao · Kathryn Roeder · Han Liu -
2012 Poster: Exponential Concentration for Mutual Information Estimation with Application to Forests »
Han Liu · John Lafferty · Larry Wasserman