Timezone: »

 
Poster
Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex
Sam Patterson · Yee Whye Teh

Fri Dec 06 07:00 PM -- 11:59 PM (PST) @ Harrah's Special Events Center, 2nd Floor

In this paper we investigate the use of Langevin Monte Carlo methods on the probability simplex and propose a new method, Stochastic gradient Riemannian Langevin dynamics, which is simple to implement and can be applied online. We apply this method to latent Dirichlet allocation in an online setting, and demonstrate that it achieves substantial performance improvements to the state of the art online variational Bayesian methods.

Author Information

Sam Patterson (Gatsby Unit, UCL)
Yee Whye Teh (University of Oxford, DeepMind)

I am a Professor of Statistical Machine Learning at the Department of Statistics, University of Oxford and a Research Scientist at DeepMind. I am also an Alan Turing Institute Fellow and a European Research Council Consolidator Fellow. I obtained my Ph.D. at the University of Toronto (working with Geoffrey Hinton), and did postdoctoral work at the University of California at Berkeley (with Michael Jordan) and National University of Singapore (as Lee Kuan Yew Postdoctoral Fellow). I was a Lecturer then a Reader at the Gatsby Computational Neuroscience Unit, UCL, and a tutorial fellow at University College Oxford, prior to my current appointment. I am interested in the statistical and computational foundations of intelligence, and works on scalable machine learning, probabilistic models, Bayesian nonparametrics and deep learning. I was programme co-chair of ICML 2017 and AISTATS 2010.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors