Timezone: »
In a closed-loop brain-computer interface (BCI), adaptive decoders are used to learn parameters suited to decoding the user's neural response. Feedback to the user provides information which permits the neural tuning to also adapt. We present an approach to model this process of co-adaptation between the encoding model of the neural signal and the decoding algorithm as a multi-agent formulation of the linear quadratic Gaussian (LQG) control problem. In simulation we characterize how decoding performance improves as the neural encoding and adaptive decoder optimize, qualitatively resembling experimentally demonstrated closed-loop improvement. We then propose a novel, modified decoder update rule which is aware of the fact that the encoder is also changing and show it can improve simulated co-adaptation dynamics. Our modeling approach offers promise for gaining insights into co-adaptation as well as improving user learning of BCI control in practical settings.
Author Information
Josh S Merel (Columbia University)
Roy Fox (Hebrew University)
Tony Jebara (Spotify)
Liam Paninski (Columbia University)
More from the Same Authors
-
2021 Poster: Three-dimensional spike localization and improved motion correction for Neuropixels recordings »
Julien Boussard · Erdem Varol · Hyun Dong Lee · Nishchal Dethe · Liam Paninski -
2020 Poster: Recurrent Switching Dynamical Systems Models for Multiple Interacting Neural Populations »
Joshua Glaser · Matthew Whiteway · John Cunningham · Liam Paninski · Scott Linderman -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 Poster: BehaveNet: nonlinear embedding and Bayesian neural decoding of behavioral videos »
Eleanor Batty · Matthew Whiteway · Shreya Saxena · Dan Biderman · Taiga Abe · Simon Musall · Winthrop Gillis · Jeffrey Markowitz · Anne Churchland · John Cunningham · Sandeep R Datta · Scott Linderman · Liam Paninski -
2019 Poster: A New Distribution on the Simplex with Auto-Encoding Applications »
Andrew Stirn · Tony Jebara · David Knowles -
2019 Poster: Scalable Bayesian inference of dendritic voltage via spatiotemporal recurrent state space models »
Ruoxi Sun · Ian Kinsella · Scott Linderman · Liam Paninski -
2019 Poster: Efficient characterization of electrically evoked responses for neural interfaces »
Nishal Shah · Sasidhar Madugula · Pawel Hottowy · Alexander Sher · Alan Litke · Liam Paninski · E.J. Chichilnisky -
2019 Oral: Scalable Bayesian inference of dendritic voltage via spatiotemporal recurrent state space models »
Ruoxi Sun · Ian Kinsella · Scott Linderman · Liam Paninski -
2017 : Poster Session 1 »
Magdalena Fuchs · David Lung · Mathias Lechner · Kezhi Li · Andrew Gordus · Vivek Venkatachalam · Shivesh Chaudhary · Jan Hůla · David Rolnick · Scott Linderman · Gonzalo Mena · Liam Paninski · Netta Cohen -
2017 Spotlight: Deep Networks for Decoding Natural Images from Retinal Signals »
Nikhil Parthasarathy · Eleanor Batty · William Falcon · Thomas Rutten · Mohit Rajpal · E.J. Chichilnisky · Liam Paninski -
2017 Poster: Neural Networks for Efficient Bayesian Decoding of Natural Images from Retinal Neurons »
Nikhil Parthasarathy · Eleanor Batty · William Falcon · Thomas Rutten · Mohit Rajpal · E.J. Chichilnisky · Liam Paninski -
2017 Poster: OnACID: Online Analysis of Calcium Imaging Data in Real Time »
Andrea Giovannucci · Johannes Friedrich · Matt Kaufman · Anne Churchland · Dmitri Chklovskii · Liam Paninski · Eftychios Pnevmatikakis -
2017 Poster: YASS: Yet Another Spike Sorter »
Jin Hyung Lee · David Carlson · Hooshmand Shokri Razaghi · Weichi Yao · Georges A Goetz · Espen Hagen · Eleanor Batty · E.J. Chichilnisky · Gaute T. Einevoll · Liam Paninski -
2016 Poster: Linear dynamical neural population models through nonlinear embeddings »
Yuanjun Gao · Evan Archer · Liam Paninski · John Cunningham -
2016 Poster: Fast Active Set Methods for Online Spike Inference from Calcium Imaging »
Johannes Friedrich · Liam Paninski -
2016 Poster: Automated scalable segmentation of neurons from multispectral images »
Uygar Sümbül · Douglas Roossien · Dawen Cai · Fei Chen · Nicholas Barry · John Cunningham · Edward Boyden · Liam Paninski -
2015 Workshop: Learning and privacy with incomplete data and weak supervision »
Giorgio Patrini · Tony Jebara · Richard Nock · Dimitrios Kotzias · Felix Xinnan Yu -
2014 Poster: Clamping Variables and Approximate Inference »
Adrian Weller · Tony Jebara -
2014 Poster: Making Pairwise Binary Graphical Models Attractive »
Nicholas Ruozzi · Tony Jebara -
2014 Spotlight: Making Pairwise Binary Graphical Models Attractive »
Nicholas Ruozzi · Tony Jebara -
2014 Oral: Clamping Variables and Approximate Inference »
Adrian Weller · Tony Jebara -
2014 Poster: Clustered factor analysis of multineuronal spike data »
Lars Buesing · Timothy A Machado · John P Cunningham · Liam Paninski -
2014 Spotlight: Clustered factor analysis of multineuronal spike data »
Lars Buesing · Timothy A Machado · John P Cunningham · Liam Paninski -
2013 Poster: Bayesian Inference and Online Experimental Design for Mapping Neural Microcircuits »
Ben Shababo · Brooks Paige · Ari Pakman · Liam Paninski -
2013 Spotlight: Bayesian Inference and Online Experimental Design for Mapping Neural Microcircuits »
Ben Shababo · Brooks Paige · Ari Pakman · Liam Paninski -
2013 Poster: Auxiliary-variable Exact Hamiltonian Monte Carlo Samplers for Binary Distributions »
Ari Pakman · Liam Paninski -
2013 Poster: Adaptive Anonymity via $b$-Matching »
Krzysztof M Choromanski · Tony Jebara · Kui Tang -
2013 Spotlight: Adaptive Anonymity via $b$-Matching »
Krzysztof M Choromanski · Tony Jebara · Kui Tang -
2013 Poster: Sparse nonnegative deconvolution for compressive calcium imaging: algorithms and phase transitions »
Eftychios Pnevmatikakis · Liam Paninski -
2013 Poster: Robust learning of low-dimensional dynamics from large neural ensembles »
David Pfau · Eftychios Pnevmatikakis · Liam Paninski -
2012 Workshop: Log-Linear Models »
Dimitri Kanevsky · Tony Jebara · Li Deng · Stephen Wright · Georg Heigold · Avishy Carmi -
2012 Poster: Majorization for CRFs and Latent Likelihoods »
Tony Jebara · Anna Choromanska -
2012 Spotlight: Majorization for CRFs and Latent Likelihoods »
Tony Jebara · Anna Choromanska -
2011 Poster: Variance Penalizing AdaBoost »
Pannagadatta K Shivaswamy · Tony Jebara -
2011 Poster: Information Rates and Optimal Decoding in Large Neural Populations »
Kamiar Rahnama Rad · Liam Paninski -
2011 Poster: Learning a Distance Metric from a Network »
Blake Shaw · Bert Huang · Tony Jebara -
2011 Spotlight: Information Rates and Optimal Decoding in Large Neural Populations »
Kamiar Rahnama Rad · Liam Paninski -
2008 Workshop: Analyzing Graphs: Theory and Applications »
Edo M Airoldi · David Blei · Jake M Hofman · Tony Jebara · Eric Xing -
2008 Poster: Relative Margin Machines »
Pannagadatta K Shivaswamy · Tony Jebara -
2008 Session: Oral session 8: Physics and High Order Statistics »
Tony Jebara -
2007 Poster: Density Estimation under Independent Similarly Distributed Sampling Assumptions »
Tony Jebara · Yingbo Song · Kapil Thadani -
2007 Spotlight: Density Estimation under Independent Similarly Distributed Sampling Assumptions »
Tony Jebara · Yingbo Song · Kapil Thadani -
2007 Spotlight: Learning Monotonic Transformations for Classification »
Andrew G Howard · Tony Jebara -
2007 Poster: Learning Monotonic Transformations for Classification »
Andrew G Howard · Tony Jebara -
2006 Poster: An EM Algorithm for Localizing Multiple Sound Sources in Reverberant Environments »
Michael Mandel · Daniel P Ellis · Tony Jebara -
2006 Poster: Gaussian and Wishart Hyperkernels »
Risi Kondor · Tony Jebara