Timezone: »
Psychologists are interested in developing instructional policies that boost student learning. An instructional policy specifies the manner and content of instruction. For example, in the domain of concept learning, a policy might specify the nature of exemplars chosen over a training sequence. Traditional psychological studies compare several hand-selected policies, e.g., contrasting a policy that selects only difficult-to-classify exemplars with a policy that gradually progresses over the training sequence from easy exemplars to more difficult (known as {\em fading}). We propose an alternative to the traditional methodology in which we define a parameterized space of policies and search this space to identify the optimum policy. For example, in concept learning, policies might be described by a fading function that specifies exemplar difficulty over time. We propose an experimental technique for searching policy spaces using Gaussian process surrogate-based optimization and a generative model of student performance. Instead of evaluating a few experimental conditions each with many human subjects, as the traditional methodology does, our technique evaluates many experimental conditions each with a few subjects. Even though individual subjects provide only a noisy estimate of the population mean, the optimization method allows us to determine the shape of the policy space and identify the global optimum, and is as efficient in its subject budget as a traditional A-B comparison. We evaluate the method via two behavioral studies, and suggest that the method has broad applicability to optimization problems involving humans in domains beyond the educational arena.
Author Information
Robert Lindsey (Imagen Technologies)
Michael Mozer (Google Research)
William J Huggins (University of Colorado)
Harold Pashler (UC San Diego)
Related Events (a corresponding poster, oral, or spotlight)
-
2013 Oral: Optimizing Instructional Policies »
Sat. Dec 7th 05:50 -- 06:10 PM Room Harvey's Convention Center Floor, CC
More from the Same Authors
-
2018 Poster: Learning Deep Disentangled Embeddings With the F-Statistic Loss »
Karl Ridgeway · Michael Mozer -
2018 Poster: Adapted Deep Embeddings: A Synthesis of Methods for k-Shot Inductive Transfer Learning »
Tyler Scott · Karl Ridgeway · Michael Mozer -
2018 Poster: Sparse Attentive Backtracking: Temporal Credit Assignment Through Reminding »
Nan Rosemary Ke · Anirudh Goyal · Olexa Bilaniuk · Jonathan Binas · Michael Mozer · Chris Pal · Yoshua Bengio -
2018 Spotlight: Sparse Attentive Backtracking: Temporal Credit Assignment Through Reminding »
Nan Rosemary Ke · Anirudh Goyal · Olexa Bilaniuk · Jonathan Binas · Michael Mozer · Chris Pal · Yoshua Bengio -
2018 Spotlight: Adapted Deep Embeddings: A Synthesis of Methods for k-Shot Inductive Transfer Learning »
Tyler Scott · Karl Ridgeway · Michael Mozer -
2017 : Access consciousness and the construction of actionable representations »
Michael C Mozer -
2017 : Workshop overview »
Michael Mozer · Angela Yu · Brenden Lake -
2017 Workshop: Cognitively Informed Artificial Intelligence: Insights From Natural Intelligence »
Michael Mozer · Brenden Lake · Angela Yu -
2016 : Overcoming temptation: Incentive design for intertemporal choice »
Michael Mozer -
2016 : Opening Remarks, Invited Talk: Michael C. Mozer »
Michael Mozer -
2014 Workshop: Human Propelled Machine Learning »
Richard Baraniuk · Michael Mozer · Divyanshu Vats · Christoph Studer · Andrew E Waters · Andrew Lan -
2014 Poster: Automatic Discovery of Cognitive Skills to Improve the Prediction of Student Learning »
Robert Lindsey · Mohammad Khajah · Michael Mozer -
2012 Workshop: Personalizing education with machine learning »
Michael Mozer · javier r movellan · Robert Lindsey · Jacob Whitehill -
2011 Poster: An Unsupervised Decontamination Procedure For Improving The Reliability Of Human Judgments »
Michael Mozer · Benjamin Link · Harold Pashler -
2010 Spotlight: Improving Human Judgments by Decontaminating Sequential Dependencies »
Michael Mozer · Harold Pashler · Matthew Wilder · Robert Lindsey · Matt Jones · Michael Jones -
2010 Poster: Improving Human Judgments by Decontaminating Sequential Dependencies »
Michael Mozer · Harold Pashler · Matthew Wilder · Robert Lindsey · Matt Jones · Michael Jones -
2009 Poster: Predicting the Optimal Spacing of Study: A Multiscale Context Model of Memory »
Michael Mozer · Harold Pashler · Nicholas Cepeda · Robert Lindsey · Edward Vul -
2009 Spotlight: Predicting the Optimal Spacing of Study: A Multiscale Context Model of Memory »
Michael Mozer · Harold Pashler · Nicholas Cepeda · Robert Lindsey · Edward Vul -
2009 Poster: Sequential effects reflect parallel learning of multiple environmental regularities »
Matthew Wilder · Matt Jones · Michael Mozer -
2008 Poster: Optimal Response Initiation: Why Recent Experience Matters »
Matt Jones · Michael Mozer · Sachiko Kinoshita -
2008 Spotlight: Optimal Response Initiation: Why Recent Experience Matters »
Matt Jones · Michael Mozer · Sachiko Kinoshita -
2008 Poster: Temporal Dynamics of Cognitive Control »
Jeremy Reynolds · Michael Mozer -
2007 Spotlight: Experience-Guided Search: A Theory of Attentional Control »
Michael Mozer · David Baldwin -
2007 Poster: Experience-Guided Search: A Theory of Attentional Control »
Michael Mozer · David Baldwin -
2006 Poster: Context Effects in Category Learning: An Investigation of Four Probabilistic Models »
Michael Mozer · Michael Jones · Michael Shettel