Timezone: »

Generalized Method-of-Moments for Rank Aggregation
Hossein Azari Soufiani · William Z Chen · David Parkes · Lirong Xia

Thu Dec 05 07:00 PM -- 11:59 PM (PST) @ Harrah's Special Events Center, 2nd Floor #None

In this paper we propose a class of efficient Generalized Method-of-Moments(GMM) algorithms for computing parameters of the Plackett-Luce model, where the data consists of full rankings over alternatives. Our technique is based on breaking the full rankings into pairwise comparisons, and then computing parameters that satisfy a set of generalized moment conditions. We identify conditions for the output of GMM to be unique, and identify a general class of consistent and inconsistent breakings. We then show by theory and experiments that our algorithms run significantly faster than the classical Minorize-Maximization (MM) algorithm, while achieving competitive statistical efficiency.

Author Information

Hossein Azari Soufiani (Harvard University)
William Z Chen (Harvard University)
David Parkes (Harvard University)

David C. Parkes is Gordon McKay Professor of Computer Science in the School of Engineering and Applied Sciences at Harvard University. He was the recipient of the NSF Career Award, the Alfred P. Sloan Fellowship, the Thouron Scholarship and the Harvard University Roslyn Abramson Award for Teaching. Parkes received his Ph.D. degree in Computer and Information Science from the University of Pennsylvania in 2001, and an M.Eng. (First class) in Engineering and Computing Science from Oxford University in 1995. At Harvard, Parkes leads the EconCS group and teaches classes in artificial intelligence, optimization, and topics at the intersection between computer science and economics. Parkes has served as Program Chair of ACM EC’07 and AAMAS’08 and General Chair of ACM EC’10, served on the editorial board of Journal of Artificial Intelligence Research, and currently serves as Editor of Games and Economic Behavior and on the boards of Journal of Autonomous Agents and Multi-agent Systems and INFORMS Journal of Computing. His research interests include computational mechanism design, electronic commerce, stochastic optimization, preference elicitation, market design, bounded rationality, computational social choice, networks and incentives, multi-agent systems, crowd-sourcing and social computing.

Lirong Xia (Harvard University)

More from the Same Authors