Timezone: »
Many scientific data occur as sequences of multidimensional arrays called tensors. How can hidden, evolving trends in such data be extracted while preserving the tensor structure? The model that is traditionally used is the linear dynamical system (LDS), which treats the observation at each time slice as a vector. In this paper, we propose the multilinear dynamical system (MLDS) for modeling tensor time series and an expectation-maximization (EM) algorithm to estimate the parameters. The MLDS models each time slice of the tensor time series as the multilinear projection of a corresponding member of a sequence of latent, low-dimensional tensors. Compared to the LDS with an equal number of parameters, the MLDS achieves higher prediction accuracy and marginal likelihood for both simulated and real datasets.
Author Information
Mark Rogers (UC Berkeley)
Lei Li (University of California Santa Barbara)
Stuart J Russell (UC Berkeley)
More from the Same Authors
-
2022 : Adversarial Policies Beat Professional-Level Go AIs »
Tony Wang · Adam Gleave · Nora Belrose · Tom Tseng · Michael Dennis · Yawen Duan · Viktor Pogrebniak · Joseph Miller · Sergey Levine · Stuart J Russell -
2023 Poster: Bridging RL Theory and Practice with the Effective Horizon »
Cassidy Laidlaw · Stuart J Russell · Anca Dragan -
2023 Oral: Bridging RL Theory and Practice with the Effective Horizon »
Cassidy Laidlaw · Stuart J Russell · Anca Dragan -
2021 : V&S | Panel discussion »
Michael Dennis · Stuart J Russell · Mireille Hildebrandt · Salome Viljoen · Natasha Jaques -
2021 : V&S | RL Fictions »
Stuart J Russell -
2021 Workshop: Political Economy of Reinforcement Learning Systems (PERLS) »
Thomas Gilbert · Stuart J Russell · Tom O Zick · Aaron Snoswell · Michael Dennis -
2018 Poster: Negotiable Reinforcement Learning for Pareto Optimal Sequential Decision-Making »
Nishant Desai · Andrew Critch · Stuart J Russell -
2017 Poster: Inverse Reward Design »
Dylan Hadfield-Menell · Smitha Milli · Pieter Abbeel · Stuart J Russell · Anca Dragan -
2017 Oral: Inverse Reward Design »
Dylan Hadfield-Menell · Smitha Milli · Pieter Abbeel · Stuart J Russell · Anca Dragan -
2016 Poster: Cooperative Inverse Reinforcement Learning »
Dylan Hadfield-Menell · Stuart J Russell · Pieter Abbeel · Anca Dragan -
2015 Poster: Gaussian Process Random Fields »
Dave Moore · Stuart J Russell -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2014 Poster: Algorithm selection by rational metareasoning as a model of human strategy selection »
Falk Lieder · Dillon Plunkett · Jessica B Hamrick · Stuart J Russell · Nicholas Hay · Tom Griffiths -
2010 Poster: Global seismic monitoring as probabilistic inference »
Nimar Arora · Stuart J Russell · Paul Kidwell · Erik Sudderth -
2008 Poster: Probabilistic detection of short events, with application to critical care monitoring »
Norm Aleks · Stuart J Russell · Michael G Madden · Diane Morabito · Geoffrey T Manley · Kristan Staudenmayer · Mitchell Cohen