Timezone: »

 
Poster
Probabilistic Movement Primitives
Alexandros Paraschos · Christian Daniel · Jan Peters · Gerhard Neumann

Sun Dec 08 02:00 PM -- 06:00 PM (PST) @ Harrah's Special Events Center, 2nd Floor #None

Movement Primitives (MP) are a well-established approach for representing modular and re-usable robot movement generators. Many state-of-the-art robot learning successes are based MPs, due to their compact representation of the inherently continuous and high dimensional robot movements. A major goal in robot learning is to combine multiple MPs as building blocks in a modular control architecture to solve complex tasks. To this effect, a MP representation has to allow for blending between motions, adapting to altered task variables, and co-activating multiple MPs in parallel. We present a probabilistic formulation of the MP concept that maintains a distribution over trajectories. Our probabilistic approach allows for the derivation of new operations which are essential for implementing all aforementioned properties in one framework. In order to use such a trajectory distribution for robot movement control, we analytically derive a stochastic feedback controller which reproduces the given trajectory distribution. We evaluate and compare our approach to existing methods on several simulated as well as real robot scenarios.

Author Information

Alexandros Paraschos (TU Darmstadt)
Christian Daniel (TU Darmstadt)
Jan Peters (TU Darmstadt & MPI Intelligent Systems)

Jan Peters is a full professor (W3) for Intelligent Autonomous Systems at the Computer Science Department of the Technische Universitaet Darmstadt and at the same time a senior research scientist and group leader at the Max-Planck Institute for Intelligent Systems, where he heads the interdepartmental Robot Learning Group. Jan Peters has received the Dick Volz Best 2007 US PhD Thesis Runner-Up Award, the Robotics: Science & Systems - Early Career Spotlight, the INNS Young Investigator Award, and the IEEE Robotics & Automation Society‘s Early Career Award as well as numerous best paper awards. In 2015, he was awarded an ERC Starting Grant. Jan Peters has studied Computer Science, Electrical, Mechanical and Control Engineering at TU Munich and FernUni Hagen in Germany, at the National University of Singapore (NUS) and the University of Southern California (USC). He has received four Master‘s degrees in these disciplines as well as a Computer Science PhD from USC.

Gerhard Neumann (TU Darmstadt)

More from the Same Authors