Timezone: »
We describe a set of fast, tractable methods for characterizing neural responses to high-dimensional sensory stimuli using a model we refer to as the generalized quadratic model (GQM). The GQM consists of a low-rank quadratic form followed by a point nonlinearity and exponential-family noise. The quadratic form characterizes the neuron's stimulus selectivity in terms of a set linear receptive fields followed by a quadratic combination rule, and the invertible nonlinearity maps this output to the desired response range. Special cases of the GQM include the 2nd-order Volterra model (Marmarelis and Marmarelis 1978, Koh and Powers 1985) and the elliptical Linear-Nonlinear-Poisson model (Park and Pillow 2011). Here we show that for "canonical form" GQMs, spectral decomposition of the first two response-weighted moments yields approximate maximum-likelihood estimators via a quantity called the expected log-likelihood. The resulting theory generalizes moment-based estimators such as the spike-triggered covariance, and, in the Gaussian noise case, provides closed-form estimators under a large class of non-Gaussian stimulus distributions. We show that these estimators are fast and provide highly accurate estimates with far lower computational cost than full maximum likelihood. Moreover, the GQM provides a natural framework for combining multi-dimensional stimulus sensitivity and spike-history dependencies within a single model. We show applications to both analog and spiking data using intracellular recordings of V1 membrane potential and extracellular recordings of retinal spike trains.
Author Information
Il Memming Park (Stony Brook University)
Evan Archer (Sony AI)
Nicholas Priebe (UT Austin)
Jonathan W Pillow (UT Austin)
Jonathan Pillow is an assistant professor in Psychology and Neurobiology at the University of Texas at Austin. He graduated from the University of Arizona in 1997 with a degree in mathematics and philosophy, and was a U.S. Fulbright fellow in Morocco in 1998. He received his Ph.D. in neuroscience from NYU in 2005, and was a Royal Society postdoctoral reserach fellow at the Gatsby Computational Neuroscience Unit, UCL from 2005 to 2008. His recent work involves statistical methods for understanding the neural code in single neurons and neural populations, and his lab conducts psychophysical experiments designed to test Bayesian models of human sensory perception.
More from the Same Authors
-
2021 : Neural Latents Benchmark ‘21: Evaluating latent variable models of neural population activity »
Felix Pei · Joel Ye · David Zoltowski · Anqi Wu · Raeed Chowdhury · Hansem Sohn · Joseph O'Doherty · Krishna V Shenoy · Matthew Kaufman · Mark Churchland · Mehrdad Jazayeri · Lee Miller · Jonathan Pillow · Il Memming Park · Eva Dyer · Chethan Pandarinath -
2022 Poster: Value Function Decomposition for Iterative Design of Reinforcement Learning Agents »
James MacGlashan · Evan Archer · Alisa Devlic · Takuma Seno · Craig Sherstan · Peter Wurman · Peter Stone -
2017 Spotlight: Fast amortized inference of neural activity from calcium imaging data with variational autoencoders »
Artur Speiser · Jinyao Yan · Evan Archer · Lars Buesing · Srinivas C Turaga · Jakob H Macke -
2017 Poster: Fast amortized inference of neural activity from calcium imaging data with variational autoencoders »
Artur Speiser · Jinyao Yan · Evan Archer · Lars Buesing · Srinivas C Turaga · Jakob H Macke -
2016 : Jonathan Pillow : Scalable Inference for Structured Hierarchical Receptive Field Models »
Jonathan W Pillow -
2016 Poster: Linear dynamical neural population models through nonlinear embeddings »
Yuanjun Gao · Evan Archer · Liam Paninski · John Cunningham -
2014 Workshop: Large scale optical physiology: From data-acquisition to models of neural coding »
Il Memming Park · Jakob H Macke · Ferran Diego Andilla · Eftychios Pnevmatikakis · Jeremy Freeman -
2014 Poster: Optimal prior-dependent neural population codes under shared input noise »
Agnieszka Grabska-Barwinska · Jonathan W Pillow -
2014 Poster: Inferring sparse representations of continuous signals with continuous orthogonal matching pursuit »
Karin C Knudson · Jacob Yates · Alexander Huk · Jonathan W Pillow -
2014 Poster: Inferring synaptic conductances from spike trains with a biophysically inspired point process model »
Kenneth W Latimer · E.J. Chichilnisky · Fred Rieke · Jonathan W Pillow -
2014 Poster: Low-dimensional models of neural population activity in sensory cortical circuits »
Evan Archer · Urs Koster · Jonathan W Pillow · Jakob H Macke -
2014 Poster: Sparse Bayesian structure learning with dependent relevance determination prior »
Anqi Wu · Mijung Park · Sanmi Koyejo · Jonathan W Pillow -
2013 Poster: Spike train entropy-rate estimation using hierarchical Dirichlet process priors »
Karin C Knudson · Jonathan W Pillow -
2013 Poster: Bayesian entropy estimation for binary spike train data using parametric prior knowledge »
Evan Archer · Il Memming Park · Jonathan W Pillow -
2013 Poster: Universal models for binary spike patterns using centered Dirichlet processes »
Il Memming Park · Evan Archer · Kenneth W Latimer · Jonathan W Pillow -
2013 Spotlight: Bayesian entropy estimation for binary spike train data using parametric prior knowledge »
Evan Archer · Il Memming Park · Jonathan W Pillow -
2013 Poster: Bayesian inference for low rank spatiotemporal neural receptive fields »
Mijung Park · Jonathan W Pillow -
2012 Poster: Fully Bayesian inference for neural models with negative-binomial spiking »
Jonathan W Pillow · James Scott -
2012 Poster: Bayesian active learning with localized priors for fast receptive field characterization »
Mijung Park · Jonathan W Pillow -
2012 Poster: Bayesian estimation of discrete entropy with mixtures of stick-breaking priors »
Evan Archer · Jonathan W Pillow · Il Memming Park -
2011 Session: Oral Session 13 »
Jonathan W Pillow -
2011 Poster: Bayesian Spike-Triggered Covariance Analysis »
Il Memming Park · Jonathan W Pillow -
2011 Poster: Active learning of neural response functions with Gaussian processes »
Mijung Park · Greg Horwitz · Jonathan W Pillow -
2011 Spotlight: Active learning of neural response functions with Gaussian processes »
Mijung Park · Greg Horwitz · Jonathan W Pillow -
2011 Tutorial: Flexible, Multivariate Point Process Models for Unlocking the Neural Code »
Jonathan W Pillow -
2010 Poster: A novel family of non-parametric cumulative based divergences for point processes »
Sohan Seth · Il Memming Park · Austin J Brockmeier · Mulugeta Semework · John S Choi · Joseph T Francis · Jose C Principe -
2009 Oral: Time-rescaling Methods for the Estimation and Assessment of Non-Poisson Neural Encoding Models »
Jonathan W Pillow -
2009 Poster: Time-rescaling methods for the estimation and assessment of non-Poisson neural encoding models »
Jonathan W Pillow -
2008 Poster: Characterizing neural dependencies with Poisson copula models »
Pietro Berkes · Frank Wood · Jonathan W Pillow -
2008 Spotlight: Characterizing neural dependencies with Poisson copula models »
Pietro Berkes · Frank Wood · Jonathan W Pillow -
2007 Oral: Neural characterization in partially observed populations of spiking neurons »
Jonathan W Pillow · Peter E Latham -
2007 Poster: Neural characterization in partially observed populations of spiking neurons »
Jonathan W Pillow · Peter E Latham