Timezone: »
Designing a principled and effective algorithm for learning deep architectures is a challenging problem. The current approach involves two training phases: a fully unsupervised learning followed by a strongly discriminative optimization. We suggest a deep learning strategy that bridges the gap between the two phases, resulting in a three-phase learning procedure. We propose to implement the scheme using a method to regularize deep belief networks with top-down information. The network is constructed from building blocks of restricted Boltzmann machines learned by combining bottom-up and top-down sampled signals. A global optimization procedure that merges samples from a forward bottom-up pass and a top-down pass is used. Experiments on the MNIST dataset show improvements over the existing algorithms for deep belief networks. Object recognition results on the Caltech-101 dataset also yield competitive results.
Author Information
Hanlin Goh (-)
Nicolas Thome (Conservatoire national des arts et métiers (Cnam))
Matthieu Cord (Sorbonne University)
Joo-Hwee Lim (Institute for Infocomm Research, Singapore)
More from the Same Authors
-
2020 : Paper 16: Driving Behavior Explanation with Multi-level Fusion »
Matthieu Cord · Patrick Pérez -
2021 Poster: RED : Looking for Redundancies for Data-FreeStructured Compression of Deep Neural Networks »
Edouard YVINEC · Arnaud Dapogny · Matthieu Cord · Kevin Bailly -
2021 Poster: Look at the Variance! Efficient Black-box Explanations with Sobol-based Sensitivity Analysis »
Thomas FEL · Remi Cadene · Mathieu Chalvidal · Matthieu Cord · David Vigouroux · Thomas Serre -
2021 Poster: Predicting Event Memorability from Contextual Visual Semantics »
Qianli Xu · Fen Fang · Ana Molino · Vigneshwaran Subbaraju · Joo-Hwee Lim -
2019 Poster: RUBi: Reducing Unimodal Biases for Visual Question Answering »
Remi Cadene · Corentin Dancette · Hedi Ben younes · Matthieu Cord · Devi Parikh -
2019 Poster: Zero-Shot Semantic Segmentation »
Maxime Bucher · Tuan-Hung VU · Matthieu Cord · Patrick Pérez -
2019 Poster: Addressing Failure Prediction by Learning Model Confidence »
Charles Corbière · Nicolas THOME · Avner Bar-Hen · Matthieu Cord · Patrick Pérez -
2019 Poster: Riemannian batch normalization for SPD neural networks »
Daniel Brooks · Olivier Schwander · Frederic Barbaresco · Jean-Yves Schneider · Matthieu Cord -
2018 Poster: Revisiting Multi-Task Learning with ROCK: a Deep Residual Auxiliary Block for Visual Detection »
Taylor Mordan · Nicolas THOME · Gilles Henaff · Matthieu Cord