Timezone: »
Nonparametric estimation of the conditional distribution of a response given high-dimensional features is a challenging problem. It is important to allow not only the mean but also the variance and shape of the response density to change flexibly with features, which are massive-dimensional. We propose a multiscale dictionary learning model, which expresses the conditional response density as a convex combination of dictionary densities, with the densities used and their weights dependent on the path through a tree decomposition of the feature space. A fast graph partitioning algorithm is applied to obtain the tree decomposition, with Bayesian methods then used to adaptively prune and average over different sub-trees in a soft probabilistic manner. The algorithm scales efficiently to approximately one million features. State of the art predictive performance is demonstrated for toy examples and two neuroscience applications including up to a million features.
Author Information
Francesca Petralia (Mt Sinai School of Medicine)
Joshua T Vogelstein (Duke University)
David B Dunson (Duke University)
More from the Same Authors
-
2016 Poster: DECOrrelated feature space partitioning for distributed sparse regression »
Xiangyu Wang · David B Dunson · Chenlei Leng -
2015 Poster: Parallelizing MCMC with Random Partition Trees »
Xiangyu Wang · Fangjian Guo · Katherine Heller · David B Dunson -
2015 Poster: On the consistency theory of high dimensional variable screening »
Xiangyu Wang · Chenlei Leng · David B Dunson -
2015 Poster: Probabilistic Curve Learning: Coulomb Repulsion and the Electrostatic Gaussian Process »
Ye Wang · David B Dunson -
2014 Poster: Median Selection Subset Aggregation for Parallel Inference »
Xiangyu Wang · Peichao Peng · David B Dunson -
2014 Oral: Median Selection Subset Aggregation for Parallel Inference »
Xiangyu Wang · Peichao Peng · David B Dunson -
2013 Poster: Robust Multimodal Graph Matching: Sparse Coding Meets Graph Matching »
Marcelo Fiori · Pablo Sprechmann · Joshua T Vogelstein · Pablo Muse · Guillermo Sapiro -
2013 Spotlight: Robust Multimodal Graph Matching: Sparse Coding Meets Graph Matching »
Marcelo Fiori · Pablo Sprechmann · Joshua T Vogelstein · Pablo Muse · Guillermo Sapiro -
2013 Poster: Locally Adaptive Bayesian Multivariate Time Series »
Daniele Durante · Bruno Scarpa · David B Dunson -
2013 Poster: Real-Time Inference for a Gamma Process Model of Neural Spiking »
David Carlson · Vinayak Rao · Joshua T Vogelstein · Lawrence Carin -
2012 Poster: Multiresolution Gaussian Processes »
Emily Fox · David B Dunson -
2012 Poster: Repulsive Mixtures »
FRANCESCA PETRALIA · Vinayak Rao · David B Dunson -
2011 Poster: Generalized Beta Mixtures of Gaussians »
Artin Armagan · David B Dunson · Merlise Clyde -
2011 Poster: The Kernel Beta Process »
Lu Ren · Yingjian Wang · David B Dunson · Lawrence Carin -
2011 Spotlight: The Kernel Beta Process »
Lu Ren · Yingjian Wang · David B Dunson · Lawrence Carin -
2011 Poster: Hierarchical Topic Modeling for Analysis of Time-Evolving Personal Choices »
XianXing Zhang · David B Dunson · Lawrence Carin -
2010 Poster: Joint Analysis of Time-Evolving Binary Matrices and Associated Documents »
Eric X Wang · Dehong Liu · Jorge G Silva · David B Dunson · Lawrence Carin -
2009 Workshop: Nonparametric Bayes »
Dilan Gorur · Francois Caron · Yee Whye Teh · David B Dunson · Zoubin Ghahramani · Michael Jordan -
2009 Poster: A Bayesian Model for Simultaneous Image Clustering, Annotation and Object Segmentation »
Lan Du · Lu Ren · David B Dunson · Lawrence Carin -
2008 Poster: Depression: an RL formulation and a behavioural test »
Quentin J Huys · Joshua T Vogelstein · Peter Dayan