Timezone: »

Noise-Enhanced Associative Memories
Amin Karbasi · Amir Hesam Salavati · Amin Shokrollahi · Lav R Varshney

Fri Dec 06 07:00 PM -- 11:59 PM (PST) @ Harrah's Special Events Center, 2nd Floor

Recent advances in associative memory design through structured pattern sets and graph-based inference algorithms have allowed reliable learning and recall of an exponential number of patterns. Although these designs correct external errors in recall, they assume neurons that compute noiselessly, in contrast to the highly variable neurons in hippocampus and olfactory cortex. Here we consider associative memories with noisy internal computations and analytically characterize performance. As long as the internal noise level is below a specified threshold, the error probability in the recall phase can be made exceedingly small. More surprisingly, we show that internal noise actually improves the performance of the recall phase. Computational experiments lend additional support to our theoretical analysis. This work suggests a functional benefit to noisy neurons in biological neuronal networks.

Author Information

Amin Karbasi (Yale University)
Amir Hesam Salavati (EPFL)
Amin Shokrollahi (EPFL)
Lav R Varshney (IBM Watson Research Center)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors