Timezone: »
Imaging neuroscience links brain activation maps to behavior and cognition via correlational studies. Due to the nature of the individual experiments, based on eliciting neural response from a small number of stimuli, this link is incomplete, and unidirectional from the causal point of view. To come to conclusions on the function implied by the activation of brain regions, it is necessary to combine a wide exploration of the various brain functions and some inversion of the statistical inference. Here we introduce a methodology for accumulating knowledge towards a bidirectional link between observed brain activity and the corresponding function. We rely on a large corpus of imaging studies and a predictive engine. Technically, the challenges are to find commonality between the studies without denaturing the richness of the corpus. The key elements that we contribute are labeling the tasks performed with a cognitive ontology, and modeling the long tail of rare paradigms in the corpus. To our knowledge, our approach is the first demonstration of predicting the cognitive content of completely new brain images. To that end, we propose a method that predicts the experimental paradigms across different studies.
Author Information
Yannick Schwartz (INRIA)
Bertrand Thirion (INRIA)
Gael Varoquaux (INRIA)
More from the Same Authors
-
2021 Spotlight: What’s a good imputation to predict with missing values? »
Marine Le Morvan · Julie Josse · Erwan Scornet · Gael Varoquaux -
2021 : AI as statistical methods for imperfect theories »
Gael Varoquaux -
2021 : Variable Importance on Medical Images and Socio-Demographic Data »
Ahmad CHAMMA · Denis A. Engemann · Bertrand Thirion -
2023 Poster: False Discovery Proportion control for aggregated Knockoffs »
Alexandre Blain · Bertrand Thirion · Olivier Grisel · Pierre Neuvial -
2023 Poster: Statistically Valid Variable Importance Assessment through Conditional Permutations »
Ahmad CHAMMA · Bertrand Thirion · Denis Engemann -
2023 Workshop: Table Representation Learning Workshop »
Madelon Hulsebos · Bojan Karlaš · Haoyu Dong · Gael Varoquaux · Laurel Orr · Pengcheng Yin -
2022 Poster: A Conditional Randomization Test for Sparse Logistic Regression in High-Dimension »
Binh T. Nguyen · Bertrand Thirion · Sylvain Arlot -
2022 Poster: Why do tree-based models still outperform deep learning on typical tabular data? »
Leo Grinsztajn · Edouard Oyallon · Gael Varoquaux -
2022 Poster: Aligning individual brains with fused unbalanced Gromov Wasserstein »
Alexis Thual · Quang Huy TRAN · Tatiana Zemskova · Nicolas Courty · Rémi Flamary · Stanislas Dehaene · Bertrand Thirion -
2021 Poster: Shared Independent Component Analysis for Multi-Subject Neuroimaging »
Hugo Richard · Pierre Ablin · Bertrand Thirion · Alexandre Gramfort · Aapo Hyvarinen -
2021 Poster: What’s a good imputation to predict with missing values? »
Marine Le Morvan · Julie Josse · Erwan Scornet · Gael Varoquaux -
2020 Poster: Modeling Shared responses in Neuroimaging Studies through MultiView ICA »
Hugo Richard · Luigi Gresele · Aapo Hyvarinen · Bertrand Thirion · Alexandre Gramfort · Pierre Ablin -
2020 Spotlight: Modeling Shared responses in Neuroimaging Studies through MultiView ICA »
Hugo Richard · Luigi Gresele · Aapo Hyvarinen · Bertrand Thirion · Alexandre Gramfort · Pierre Ablin -
2020 Poster: NeuMiss networks: differentiable programming for supervised learning with missing values. »
Marine Le Morvan · Julie Josse · Thomas Moreau · Erwan Scornet · Gael Varoquaux -
2020 Oral: NeuMiss networks: differentiable programming for supervised learning with missing values. »
Marine Le Morvan · Julie Josse · Thomas Moreau · Erwan Scornet · Gael Varoquaux -
2020 Poster: Statistical control for spatio-temporal MEG/EEG source imaging with desparsified mutli-task Lasso »
Jerome-Alexis Chevalier · Joseph Salmon · Alexandre Gramfort · Bertrand Thirion -
2019 Poster: Comparing distributions: $\ell_1$ geometry improves kernel two-sample testing »
Meyer Scetbon · Gael Varoquaux -
2019 Spotlight: Comparing distributions: $\ell_1$ geometry improves kernel two-sample testing »
Meyer Scetbon · Gael Varoquaux -
2019 Poster: Manifold-regression to predict from MEG/EEG brain signals without source modeling »
David Sabbagh · Pierre Ablin · Gael Varoquaux · Alexandre Gramfort · Denis A. Engemann -
2017 : Scikit-learn & nilearn: Democratisation of machine learning for brain imaging (INRIA) »
Gael Varoquaux -
2017 : Invited Talk: "Tales from fMRI: Learning from limited labeled data" »
Gael Varoquaux -
2017 Poster: Learning Neural Representations of Human Cognition across Many fMRI Studies »
Arthur Mensch · Julien Mairal · Danilo Bzdok · Bertrand Thirion · Gael Varoquaux -
2016 Poster: Learning brain regions via large-scale online structured sparse dictionary learning »
Elvis DOHMATOB · Arthur Mensch · Gael Varoquaux · Bertrand Thirion -
2015 Poster: Semi-Supervised Factored Logistic Regression for High-Dimensional Neuroimaging Data »
Danilo Bzdok · Michael Eickenberg · Olivier Grisel · Bertrand Thirion · Gael Varoquaux -
2011 Workshop: Machine Learning and Interpretation in Neuroimaging (MLINI-2011) »
Melissa K Carroll · Guillermo Cecchi · Kai-min K Chang · Moritz Grosse-Wentrup · James Haxby · Georg Langs · Anna Korhonen · Bjoern Menze · Brian Murphy · Janaina Mourao-Miranda · Vittorio Murino · Francisco Pereira · Irina Rish · Mert Sabuncu · Irina Simanova · Bertrand Thirion -
2010 Poster: Brain covariance selection: better individual functional connectivity models using population prior »
Gaël Varoquaux · Alexandre Gramfort · Jean-Baptiste Poline · Bertrand Thirion -
2009 Poster: Discriminative Network Models of Schizophrenia »
Guillermo Cecchi · Irina Rish · Benjamin Thyreau · Bertrand Thirion · Marion Plaze · Jean-Luc Martinot · Marie Laure Paillere-Martinot · Jean-Baptiste Poline -
2009 Oral: Discriminative Network Models of Schizophrenia »
Guillermo Cecchi · Irina Rish · Benjamin Thyreau · Bertrand Thirion · Marion Plaze · Jean-Luc Martinot · Marie Laure Paillere-Martinot · Jean-Baptiste Poline