Timezone: »

 
Poster
Bayesian Hierarchical Community Discovery
Charles Blundell · Yee Whye Teh

Fri Dec 06 07:00 PM -- 11:59 PM (PST) @ Harrah's Special Events Center, 2nd Floor

We propose an efficient Bayesian nonparametric model for discovering hierarchical community structure in social networks. Our model is a tree-structured mixture of potentially exponentially many stochastic blockmodels. We describe a family of greedy agglomerative model selection algorithms whose worst case scales quadratically in the number of vertices of the network, but independent of the number of communities. Our algorithms are two orders of magnitude faster than the infinite relational model, achieving comparable or better accuracy.

Author Information

Charles Blundell (DeepMind)
Yee Whye Teh (University of Oxford, DeepMind)

I am a Professor of Statistical Machine Learning at the Department of Statistics, University of Oxford and a Research Scientist at DeepMind. I am also an Alan Turing Institute Fellow and a European Research Council Consolidator Fellow. I obtained my Ph.D. at the University of Toronto (working with Geoffrey Hinton), and did postdoctoral work at the University of California at Berkeley (with Michael Jordan) and National University of Singapore (as Lee Kuan Yew Postdoctoral Fellow). I was a Lecturer then a Reader at the Gatsby Computational Neuroscience Unit, UCL, and a tutorial fellow at University College Oxford, prior to my current appointment. I am interested in the statistical and computational foundations of intelligence, and works on scalable machine learning, probabilistic models, Bayesian nonparametrics and deep learning. I was programme co-chair of ICML 2017 and AISTATS 2010.

More from the Same Authors