Timezone: »
Poster
Online learning in episodic Markovian decision processes by relative entropy policy search
Alexander Zimin · Gergely Neu
Thu Dec 05 07:00 PM -- 11:59 PM (PST) @ Harrah's Special Events Center, 2nd Floor
We study the problem of online learning in finite episodic Markov decision processes where the loss function is allowed to change between episodes. The natural performance measure in this learning problem is the regret defined as the difference between the total loss of the best stationary policy and the total loss suffered by the learner. We assume that the learner is given access to a finite action space $\A$ and the state space $\X$ has a layered structure with $L$ layers, so that state transitions are only possible between consecutive layers. We describe a variant of the recently proposed Relative Entropy Policy Search algorithm and show that its regret after $T$ episodes is $2\sqrt{L\nX\nA T\log(\nX\nA/L)}$ in the bandit setting and $2L\sqrt{T\log(\nX\nA/L)}$ in the full information setting. These guarantees largely improve previously known results under much milder assumptions and cannot be significantly improved under general assumptions.
Author Information
Alexander Zimin (Amazon)
Gergely Neu (Universitat Pompeu Fabra)
More from the Same Authors
-
2022 Poster: Lifting the Information Ratio: An Information-Theoretic Analysis of Thompson Sampling for Contextual Bandits »
Gergely Neu · Iuliia Olkhovskaia · Matteo Papini · Ludovic Schwartz -
2022 Poster: Proximal Point Imitation Learning »
Luca Viano · Angeliki Kamoutsi · Gergely Neu · Igor Krawczuk · Volkan Cevher -
2021 Poster: Online learning in MDPs with linear function approximation and bandit feedback. »
Gergely Neu · Iuliia Olkhovskaia -
2020 Poster: A Unifying View of Optimism in Episodic Reinforcement Learning »
Gergely Neu · Ciara Pike-Burke -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 Poster: Adaptive Temporal-Difference Learning for Policy Evaluation with Per-State Uncertainty Estimates »
Carlos Riquelme · Hugo Penedones · Damien Vincent · Hartmut Maennel · Sylvain Gelly · Timothy A Mann · Andre Barreto · Gergely Neu -
2019 Poster: Beating SGD Saturation with Tail-Averaging and Minibatching »
Nicole Muecke · Gergely Neu · Lorenzo Rosasco -
2017 Poster: Boltzmann Exploration Done Right »
Nicolò Cesa-Bianchi · Claudio Gentile · Gergely Neu · Gabor Lugosi -
2015 : Discussion Panel »
Tim van Erven · Wouter Koolen · Peter Grünwald · Shai Ben-David · Dylan Foster · Satyen Kale · Gergely Neu -
2015 : Adaptive Regret Bounds for Non-Stochastic Bandits »
Gergely Neu -
2015 Poster: Explore no more: Improved high-probability regret bounds for non-stochastic bandits »
Gergely Neu -
2014 Poster: Exploiting easy data in online optimization »
Amir Sani · Gergely Neu · Alessandro Lazaric -
2014 Poster: Efficient learning by implicit exploration in bandit problems with side observations »
Tomáš Kocák · Gergely Neu · Michal Valko · Remi Munos -
2014 Spotlight: Exploiting easy data in online optimization »
Amir Sani · Gergely Neu · Alessandro Lazaric -
2014 Poster: Online combinatorial optimization with stochastic decision sets and adversarial losses »
Gergely Neu · Michal Valko -
2010 Spotlight: Online Markov Decision Processes under Bandit Feedback »
Gergely Neu · András György · András Antos · Csaba Szepesvari -
2010 Poster: Online Markov Decision Processes under Bandit Feedback »
Gergely Neu · András György · Csaba Szepesvari · András Antos