Timezone: »
Measuring similarity is crucial to many learning tasks. It is also a richer and broader notion than what most metric learning algorithms can model. For example, similarity can arise from the process of aggregating the decisions of multiple latent components, where each latent component compares data in its own way by focusing on a different subset of features. In this paper, we propose Similarity Component Analysis (SCA), a probabilistic graphical model that discovers those latent components from data. In SCA, a latent component generates a local similarity value, computed with its own metric, independently of other components. The final similarity measure is then obtained by combining the local similarity values with a (noisy-)OR gate. We derive an EM-based algorithm for fitting the model parameters with similarity-annotated data from pairwise comparisons. We validate the SCA model on synthetic datasets where SCA discovers the ground-truth about the latent components. We also apply SCA to a multiway classification task and a link prediction task. For both tasks, SCA attains significantly better prediction accuracies than competing methods. Moreover, we show how SCA can be instrumental in exploratory analysis of data, where we gain insights about the data by examining patterns hidden in its latent components' local similarity values.
Author Information
Soravit Changpinyo (University of Southern California (USC))
Kuan Liu (University of Southern California (USC))
Fei Sha (University of Southern California (USC))
More from the Same Authors
-
2021 Poster: Robust Visual Reasoning via Language Guided Neural Module Networks »
Arjun Akula · Varun Jampani · Soravit Changpinyo · Song-Chun Zhu -
2021 Poster: On Model Calibration for Long-Tailed Object Detection and Instance Segmentation »
Tai-Yu Pan · Cheng Zhang · Yandong Li · Hexiang Hu · Dong Xuan · Soravit Changpinyo · Boqing Gong · Wei-Lun Chao -
2020 Session: Orals & Spotlights Track 01: Representation/Relational »
Laurens van der Maaten · Fei Sha -
2018 Poster: Synthesize Policies for Transfer and Adaptation across Tasks and Environments »
Hexiang Hu · Liyu Chen · Boqing Gong · Fei Sha -
2018 Spotlight: Synthesize Policies for Transfer and Adaptation across Tasks and Environments »
Hexiang Hu · Liyu Chen · Boqing Gong · Fei Sha -
2017 Workshop: Optimal Transport and Machine Learning »
Olivier Bousquet · Marco Cuturi · Gabriel Peyré · Fei Sha · Justin Solomon -
2017 Poster: An Empirical Study on The Properties of Random Bases for Kernel Methods »
Maximilian Alber · Pieter-Jan Kindermans · Kristof Schütt · Klaus-Robert Müller · Fei Sha -
2015 : Do Shallow Kernel Methods Match Deep Neural Networks »
Fei Sha -
2015 : Do Shallow Kernel Methods Match Deep Neural Networks? »
Fei Sha -
2014 Poster: Diverse Sequential Subset Selection for Supervised Video Summarization »
Boqing Gong · Wei-Lun Chao · Kristen Grauman · Fei Sha -
2013 Workshop: New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks »
Urun Dogan · Marius Kloft · Tatiana Tommasi · Francesco Orabona · Massimiliano Pontil · Sinno Jialin Pan · Shai Ben-David · Arthur Gretton · Fei Sha · Marco Signoretto · Rajhans Samdani · Yun-Qian Miao · Mohammad Gheshlaghi azar · Ruth Urner · Christoph Lampert · Jonathan How -
2013 Poster: Reshaping Visual Datasets for Domain Adaptation »
Boqing Gong · Kristen Grauman · Fei Sha -
2012 Poster: Non-linear Metric Learning »
Dor Kedem · Stephen Tyree · Kilian Q Weinberger · Fei Sha · Gert Lanckriet -
2012 Session: Oral Session 5 »
Fei Sha -
2012 Poster: Semantic Kernel Forests from Multiple Taxonomies »
Sung Ju Hwang · Kristen Grauman · Fei Sha -
2011 Poster: Learning a Tree of Metrics with Disjoint Visual Features »
Sung Ju Hwang · Kristen Grauman · Fei Sha -
2010 Workshop: Challenges of Data Visualization »
Barbara Hammer · Laurens van der Maaten · Fei Sha · Alexander Smola -
2010 Poster: Unsupervised Kernel Dimension Reduction »
Meihong Wang · Fei Sha · Michael Jordan -
2009 Workshop: Statistical Machine Learning for Visual Analytics »
Guy Lebanon · Fei Sha -
2008 Poster: DiscLDA: Discriminative Learning for Dimensionality Reduction and Classification »
Simon Lacoste-Julien · Fei Sha · Michael Jordan -
2008 Session: Oral session 1: Clustering »
Fei Sha -
2007 Workshop: Machine Learning for Systems Problems (Part 2) »
Archana Ganapathi · Sumit Basu · Fei Sha · Emre Kiciman -
2007 Workshop: Machine Learning for Systems Problems (Part 1) »
Archana Ganapathi · Sumit Basu · Fei Sha · Emre Kiciman -
2007 Session: Session 7: Systems and Applications »
Fei Sha -
2006 Poster: Large Margin Gaussian Mixture Models for Automatic Speech Recognition »
Fei Sha · Lawrence Saul -
2006 Talk: Large Margin Gaussian Mixture Models for Automatic Speech Recognition »
Fei Sha · Lawrence Saul -
2006 Poster: Graph Regularization for Maximum Variance Unfolding with an Application to Sensor Localization »
Kilian Q Weinberger · Fei Sha · Qihui Zhu · Lawrence Saul