Timezone: »

Robust Image Denoising with Multi-Column Deep Neural Networks
Forest Agostinelli · Michael R Anderson · Honglak Lee

Fri Dec 06 07:00 PM -- 11:59 PM (PST) @ Harrah's Special Events Center, 2nd Floor

Stacked sparse denoising auto-encoders (SSDAs) have recently been shown to be successful at removing noise from corrupted images. However, like most denoising techniques, the SSDA is not robust to variation in noise types beyond what it has seen during training. We present the multi-column stacked sparse denoising autoencoder, a novel technique of combining multiple SSDAs into a multi-column SSDA (MC-SSDA) by combining the outputs of each SSDA. We eliminate the need to determine the type of noise, let alone its statistics, at test time. We show that good denoising performance can be achieved with a single system on a variety of different noise types, including ones not seen in the training set. Additionally, we experimentally demonstrate the efficacy of MC-SSDA denoising by achieving MNIST digit error rates on denoised images at close to that of the uncorrupted images.

Author Information

Forest Agostinelli (University of South Carolina)
Michael R Anderson (University of Michigan)
Honglak Lee (LG AI Research / U. Michigan)

More from the Same Authors