Timezone: »
Multi-task prediction models are widely being used to couple regressors or classification models by sharing information across related tasks. A common pitfall of these models is that they assume that the output tasks are independent conditioned on the inputs. Here, we propose a multi-task Gaussian process approach to model both the relatedness between regressors as well as the task correlations in the residuals, in order to more accurately identify true sharing between regressors. The resulting Gaussian model has a covariance term that is the sum of Kronecker products, for which efficient parameter inference and out of sample prediction are feasible. On both synthetic examples and applications to phenotype prediction in genetics, we find substantial benefits of modeling structured noise compared to established alternatives.
Author Information
Barbara Rakitsch (MPI Tübingen)
Christoph Lippert (Human Longevity, Inc.)
Karsten Borgwardt (ETH Zurich)
Karsten Borgwardt is Professor of Data Mining at ETH Zürich, at the Department of Biosystems located in Basel. His work has won several awards, including the NIPS 2009 Outstanding Paper Award, the Krupp Award for Young Professors 2013 and a Starting Grant 2014 from the ERC-backup scheme of the Swiss National Science Foundation. Since 2013, he is heading the Marie Curie Initial Training Network for "Machine Learning for Personalized Medicine" with 12 partner labs in 8 countries (http://www.mlpm.eu). The business magazine "Capital" listed him as one of the "Top 40 under 40" in Science in/from Germany in 2014, 2015 and 2016. For more information, visit: https://www.bsse.ethz.ch/mlcb
Oliver Stegle (German Cancer Research Center)
More from the Same Authors
-
2023 Poster: ProteinShake: Building datasets and benchmarks for deep learning on protein structures »
Tim Kucera · Carlos Oliver · Dexiong Chen · Karsten Borgwardt -
2020 Poster: Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence »
Bastian Rieck · Tristan Yates · Christian Bock · Karsten Borgwardt · Guy Wolf · Nicholas Turk-Browne · Smita Krishnaswamy -
2020 Spotlight: Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence »
Bastian Rieck · Tristan Yates · Christian Bock · Karsten Borgwardt · Guy Wolf · Nicholas Turk-Browne · Smita Krishnaswamy -
2019 Poster: Wasserstein Weisfeiler-Lehman Graph Kernels »
Matteo Togninalli · Elisabetta Ghisu · Felipe Llinares-Lopez · Bastian Rieck · Karsten Borgwardt -
2019 Spotlight: Wasserstein Weisfeiler-Lehman Graph Kernels »
Matteo Togninalli · Elisabetta Ghisu · Felipe Llinares-López · Bastian Rieck · Karsten Borgwardt -
2016 Workshop: Machine Learning in Computational Biology »
Gerald Quon · Sara Mostafavi · James Y Zou · Barbara Engelhardt · Oliver Stegle · Nicolo Fusi -
2016 Poster: Finding significant combinations of features in the presence of categorical covariates »
Laetitia Papaxanthos · Felipe Llinares-López · Dean Bodenham · Karsten Borgwardt -
2015 Workshop: Machine Learning in Computational Biology »
Nicolo Fusi · Anna Goldenberg · Sara Mostafavi · Gerald Quon · Oliver Stegle -
2015 Poster: Halting in Random Walk Kernels »
Mahito Sugiyama · Karsten Borgwardt -
2014 Workshop: Machine Learning in Computational Biology »
Oliver Stegle · Sara Mostafavi · Anna Goldenberg · Su-In Lee · Michael Leung · Anshul Kundaje · Mark B Gerstein · Martin Renqiang Min · Hannes Bretschneider · Francesco Paolo Casale · Loïc Schwaller · Amit G Deshwar · Benjamin A Logsdon · Yuanyang Zhang · Ali Punjani · Derek C Aguiar · Samuel Kaski -
2013 Workshop: Machine Learning in Computational Biology »
Jean-Philippe Vert · Anna Goldenberg · Sara Mostafavi · Oliver Stegle -
2013 Poster: Scalable kernels for graphs with continuous attributes »
Aasa Feragen · Niklas Kasenburg · Jens Petersen · Marleen de Bruijne · Karsten Borgwardt -
2013 Poster: Rapid Distance-Based Outlier Detection via Sampling »
Mahito Sugiyama · Karsten Borgwardt -
2011 Workshop: From statistical genetics to predictive models in personalized medicine »
Karsten Borgwardt · Oliver Stegle · Shipeng Yu · Glenn Fung · Faisal Farooq · Balaji R Krishnapuram -
2011 Poster: Learning sparse inverse covariance matrices in the presence of confounders »
Oliver Stegle · Christoph Lippert · Joris M Mooij · Neil D Lawrence · Karsten Borgwardt -
2010 Poster: Probabilistic latent variable models for distinguishing between cause and effect »
Joris M Mooij · Oliver Stegle · Dominik Janzing · Kun Zhang · Bernhard Schölkopf -
2009 Workshop: Transfer Learning for Structured Data »
Sinno Jialin Pan · Ivor W Tsang · Le Song · Karsten Borgwardt · Qiang Yang -
2009 Poster: Fast subtree kernels on graphs »
Nino Shervashidze · Karsten Borgwardt -
2009 Oral: Fast Subtree Kernels on Graphs »
Nino Shervashidze · Karsten Borgwardt -
2008 Workshop: Structured Input - Structured Output »
Karsten Borgwardt · Koji Tsuda · Vishwanathan S V N · Xifeng Yan -
2007 Oral: Colored Maximum Variance Unfolding »
Le Song · Alexander Smola · Karsten Borgwardt · Arthur Gretton -
2007 Poster: Colored Maximum Variance Unfolding »
Le Song · Alexander Smola · Karsten Borgwardt · Arthur Gretton -
2006 Poster: Fast Computation of Graph Kernels »
Vishwanathan S V N · Karsten Borgwardt · Nic Schraudolph -
2006 Poster: A Kernel Method for the Two-Sample-Problem »
Arthur Gretton · Karsten Borgwardt · Malte J Rasch · Bernhard Schölkopf · Alexander Smola -
2006 Poster: Correcting Sample Selection Bias by Unlabeled Data »
Jiayuan Huang · Alexander Smola · Arthur Gretton · Karsten Borgwardt · Bernhard Schölkopf -
2006 Spotlight: Correcting Sample Selection Bias by Unlabeled Data »
Jiayuan Huang · Alexander Smola · Arthur Gretton · Karsten Borgwardt · Bernhard Schölkopf -
2006 Talk: A Kernel Method for the Two-Sample-Problem »
Arthur Gretton · Karsten Borgwardt · Malte J Rasch · Bernhard Schölkopf · Alexander Smola