Timezone: »

Stochastic Ratio Matching of RBMs for Sparse High-Dimensional Inputs
Yann Dauphin · Yoshua Bengio

Fri Dec 06 07:00 PM -- 11:59 PM (PST) @ Harrah's Special Events Center, 2nd Floor

Sparse high-dimensional data vectors are common in many application domains where a very large number of rarely non-zero features can be devised. Unfortunately, this creates a computational bottleneck for unsupervised feature learning algorithms such as those based on auto-encoders and RBMs, because they involve a reconstruction step where the whole input vector is predicted from the current feature values. An algorithm was recently developed to successfully handle the case of auto-encoders, based on an importance sampling scheme stochastically selecting which input elements to actually reconstruct during training for each particular example. To generalize this idea to RBMs, we propose a stochastic ratio-matching algorithm that inherits all the computational advantages and unbiasedness of the importance sampling scheme. We show that stochastic ratio matching is a good estimator, allowing the approach to beat the state-of-the-art on two bag-of-word text classification benchmarks (20 Newsgroups and RCV1), while keeping computational cost linear in the number of non-zeros.

Author Information

Yann Dauphin (Facebook AI Research)
Yoshua Bengio (Mila / U. Montreal)

Yoshua Bengio (PhD'1991 in Computer Science, McGill University). After two post-doctoral years, one at MIT with Michael Jordan and one at AT&T Bell Laboratories with Yann LeCun, he became professor at the department of computer science and operations research at Université de Montréal. Author of two books (a third is in preparation) and more than 200 publications, he is among the most cited Canadian computer scientists and is or has been associate editor of the top journals in machine learning and neural networks. Since '2000 he holds a Canada Research Chair in Statistical Learning Algorithms, since '2006 an NSERC Chair, since '2005 his is a Senior Fellow of the Canadian Institute for Advanced Research and since 2014 he co-directs its program focused on deep learning. He is on the board of the NIPS foundation and has been program chair and general chair for NIPS. He has co-organized the Learning Workshop for 14 years and co-created the International Conference on Learning Representations. His interests are centered around a quest for AI through machine learning, and include fundamental questions on deep learning, representation learning, the geometry of generalization in high-dimensional spaces, manifold learning and biologically inspired learning algorithms.

More from the Same Authors