Timezone: »
Recently, it has become evident that submodularity naturally captures widely occurring concepts in machine learning, signal processing and computer vision. In consequence, there is need for efficient optimization procedures for submodular functions, in particular for minimization problems. While general submodular minimization is challenging, we propose a new approach that exploits existing decomposability of submodular functions. In contrast to previous approaches, our method is neither approximate, nor impractical, nor does it need any cumbersome parameter tuning. Moreover, it is easy to implement and parallelize. A key component of our approach is a formulation of the discrete submodular minimization problem as a continuous best approximation problem. It is solved through a sequence of reflections and its solution can be automatically thresholded to obtain an optimal discrete solution. Our method solves both the continuous and discrete formulations of the problem, and therefore has applications in learning, inference, and reconstruction. In our experiments, we show the benefits of our new algorithms for two image segmentation tasks.
Author Information
Stefanie Jegelka (MIT)
Francis Bach (INRIA - Ecole Normale Superieure)
Suvrit Sra (MIT)
Suvrit Sra is a faculty member within the EECS department at MIT, where he is also a core faculty member of IDSS, LIDS, MIT-ML Group, as well as the statistics and data science center. His research spans topics in optimization, matrix theory, differential geometry, and probability theory, which he connects with machine learning --- a key focus of his research is on the theme "Optimization for Machine Learning” (http://opt-ml.org)
More from the Same Authors
-
2021 Spotlight: Batch Normalization Orthogonalizes Representations in Deep Random Networks »
Hadi Daneshmand · Amir Joudaki · Francis Bach -
2022 Poster: A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning »
Eloïse Berthier · Ziad Kobeissi · Francis Bach -
2023 Poster: The Curious Role of Normalization in Sharpness-Aware Minimization »
Yan Dai · Kwangjun Ahn · Suvrit Sra -
2023 Poster: On the impact of activation and normalization in obtaining isometric embeddings at initialization »
Amir Joudaki · Hadi Daneshmand · Francis Bach -
2023 Poster: Differentiable Clustering with Perturbed Spanning Forests »
Lawrence Stewart · Francis Bach · Felipe Llinares-Lopez · Quentin Berthet -
2023 Poster: Transformers learn to implement preconditioned gradient descent for in-context learning »
Kwangjun Ahn · Xiang Cheng · Hadi Daneshmand · Suvrit Sra -
2023 Poster: Regularization properties of adversarially-trained linear regression »
Antonio Ribeiro · Dave Zachariah · Francis Bach · Thomas Schön -
2022 Spotlight: Lightning Talks 1A-4 »
Siwei Wang · Jing Liu · Nianqiao Ju · Shiqian Li · Eloïse Berthier · Muhammad Faaiz Taufiq · Arsene Fansi Tchango · Chen Liang · Chulin Xie · Jordan Awan · Jean-Francois Ton · Ziad Kobeissi · Wenguan Wang · Xinwang Liu · Kewen Wu · Rishab Goel · Jiaxu Miao · Suyuan Liu · Julien Martel · Ruobin Gong · Francis Bach · Chi Zhang · Rob Cornish · Sanmi Koyejo · Zhi Wen · Yee Whye Teh · Yi Yang · Jiaqi Jin · Bo Li · Yixin Zhu · Vinayak Rao · Wenxuan Tu · Gaetan Marceau Caron · Arnaud Doucet · Xinzhong Zhu · Joumana Ghosn · En Zhu -
2022 Spotlight: A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning »
Eloïse Berthier · Ziad Kobeissi · Francis Bach -
2022 Poster: Variational inference via Wasserstein gradient flows »
Marc Lambert · Sinho Chewi · Francis Bach · Silvère Bonnabel · Philippe Rigollet -
2022 Poster: CCCP is Frank-Wolfe in disguise »
Alp Yurtsever · Suvrit Sra -
2022 Poster: Efficient Sampling on Riemannian Manifolds via Langevin MCMC »
Xiang Cheng · Jingzhao Zhang · Suvrit Sra -
2022 Poster: Asynchronous SGD Beats Minibatch SGD Under Arbitrary Delays »
Konstantin Mishchenko · Francis Bach · Mathieu Even · Blake Woodworth -
2022 Poster: On the Theoretical Properties of Noise Correlation in Stochastic Optimization »
Aurelien Lucchi · Frank Proske · Antonio Orvieto · Francis Bach · Hans Kersting -
2022 Poster: Fast Stochastic Composite Minimization and an Accelerated Frank-Wolfe Algorithm under Parallelization »
Benjamin Dubois-Taine · Francis Bach · Quentin Berthet · Adrien Taylor -
2022 Poster: Active Labeling: Streaming Stochastic Gradients »
Vivien Cabannes · Francis Bach · Vianney Perchet · Alessandro Rudi -
2021 Test Of Time: Online Learning for Latent Dirichlet Allocation »
Matthew Hoffman · Francis Bach · David Blei -
2021 Poster: Can contrastive learning avoid shortcut solutions? »
Joshua Robinson · Li Sun · Ke Yu · Kayhan Batmanghelich · Stefanie Jegelka · Suvrit Sra -
2021 Poster: Overcoming the curse of dimensionality with Laplacian regularization in semi-supervised learning »
Vivien Cabannes · Loucas Pillaud-Vivien · Francis Bach · Alessandro Rudi -
2021 Poster: Three Operator Splitting with Subgradients, Stochastic Gradients, and Adaptive Learning Rates »
Alp Yurtsever · Alex Gu · Suvrit Sra -
2021 Oral: Continuized Accelerations of Deterministic and Stochastic Gradient Descents, and of Gossip Algorithms »
Mathieu Even · Raphaël Berthier · Francis Bach · Nicolas Flammarion · Hadrien Hendrikx · Pierre Gaillard · Laurent Massoulié · Adrien Taylor -
2021 Poster: Batch Normalization Orthogonalizes Representations in Deep Random Networks »
Hadi Daneshmand · Amir Joudaki · Francis Bach -
2021 Poster: Continuized Accelerations of Deterministic and Stochastic Gradient Descents, and of Gossip Algorithms »
Mathieu Even · Raphaël Berthier · Francis Bach · Nicolas Flammarion · Hadrien Hendrikx · Pierre Gaillard · Laurent Massoulié · Adrien Taylor -
2020 : Invited speaker: SGD without replacement: optimal rate analysis and more, Suvrit Sra »
Suvrit Sra -
2020 : Francis Bach - Where is Machine Learning Going? »
Francis Bach -
2020 Poster: SGD with shuffling: optimal rates without component convexity and large epoch requirements »
Kwangjun Ahn · Chulhee Yun · Suvrit Sra -
2020 Spotlight: SGD with shuffling: optimal rates without component convexity and large epoch requirements »
Kwangjun Ahn · Chulhee Yun · Suvrit Sra -
2020 Poster: Tight Nonparametric Convergence Rates for Stochastic Gradient Descent under the Noiseless Linear Model »
Raphaël Berthier · Francis Bach · Pierre Gaillard -
2020 Poster: Learning with Differentiable Pertubed Optimizers »
Quentin Berthet · Mathieu Blondel · Olivier Teboul · Marco Cuturi · Jean-Philippe Vert · Francis Bach -
2020 Poster: Batch normalization provably avoids ranks collapse for randomly initialised deep networks »
Hadi Daneshmand · Jonas Kohler · Francis Bach · Thomas Hofmann · Aurelien Lucchi -
2020 Poster: Non-parametric Models for Non-negative Functions »
Ulysse Marteau-Ferey · Francis Bach · Alessandro Rudi -
2020 Spotlight: Non-parametric Models for Non-negative Functions »
Ulysse Marteau-Ferey · Francis Bach · Alessandro Rudi -
2020 Session: Orals & Spotlights Track 30: Optimization/Theory »
Yuxin Chen · Francis Bach -
2020 Poster: Dual-Free Stochastic Decentralized Optimization with Variance Reduction »
Hadrien Hendrikx · Francis Bach · Laurent Massoulié -
2020 Poster: Why are Adaptive Methods Good for Attention Models? »
Jingzhao Zhang · Sai Praneeth Karimireddy · Andreas Veit · Seungyeon Kim · Sashank Reddi · Sanjiv Kumar · Suvrit Sra -
2020 Poster: Towards Minimax Optimal Reinforcement Learning in Factored Markov Decision Processes »
Yi Tian · Jian Qian · Suvrit Sra -
2020 Spotlight: Towards Minimax Optimal Reinforcement Learning in Factored Markov Decision Processes »
Yi Tian · Jian Qian · Suvrit Sra -
2019 Poster: Flexible Modeling of Diversity with Strongly Log-Concave Distributions »
Joshua Robinson · Suvrit Sra · Stefanie Jegelka -
2019 Poster: Are deep ResNets provably better than linear predictors? »
Chulhee Yun · Suvrit Sra · Ali Jadbabaie -
2019 Poster: Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity »
Chulhee Yun · Suvrit Sra · Ali Jadbabaie -
2019 Spotlight: Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity »
Chulhee Yun · Suvrit Sra · Ali Jadbabaie -
2019 Poster: Fast Decomposable Submodular Function Minimization using Constrained Total Variation »
Senanayak Sesh Kumar Karri · Francis Bach · Thomas Pock -
2019 Poster: Towards closing the gap between the theory and practice of SVRG »
Othmane Sebbouh · Nidham Gazagnadou · Samy Jelassi · Francis Bach · Robert Gower -
2019 Poster: An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums »
Hadrien Hendrikx · Francis Bach · Laurent Massoulié -
2019 Poster: On Lazy Training in Differentiable Programming »
Lénaïc Chizat · Edouard Oyallon · Francis Bach -
2019 Poster: Implicit Regularization of Discrete Gradient Dynamics in Linear Neural Networks »
Gauthier Gidel · Francis Bach · Simon Lacoste-Julien -
2019 Poster: Massively scalable Sinkhorn distances via the Nyström method »
Jason Altschuler · Francis Bach · Alessandro Rudi · Jonathan Niles-Weed -
2019 Poster: Localized Structured Prediction »
Carlo Ciliberto · Francis Bach · Alessandro Rudi -
2019 Poster: UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization »
Ali Kavis · Kfir Y. Levy · Francis Bach · Volkan Cevher -
2019 Spotlight: UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization »
Ali Kavis · Kfir Y. Levy · Francis Bach · Volkan Cevher -
2019 Poster: Partially Encrypted Deep Learning using Functional Encryption »
Théo Ryffel · David Pointcheval · Francis Bach · Edouard Dufour-Sans · Romain Gay -
2019 Poster: Globally Convergent Newton Methods for Ill-conditioned Generalized Self-concordant Losses »
Ulysse Marteau-Ferey · Francis Bach · Alessandro Rudi -
2018 Poster: Optimal Algorithms for Non-Smooth Distributed Optimization in Networks »
Kevin Scaman · Francis Bach · Sebastien Bubeck · Laurent Massoulié · Yin Tat Lee -
2018 Poster: Direct Runge-Kutta Discretization Achieves Acceleration »
Jingzhao Zhang · Aryan Mokhtari · Suvrit Sra · Ali Jadbabaie -
2018 Poster: Statistical Optimality of Stochastic Gradient Descent on Hard Learning Problems through Multiple Passes »
Loucas Pillaud-Vivien · Alessandro Rudi · Francis Bach -
2018 Spotlight: Direct Runge-Kutta Discretization Achieves Acceleration »
Jingzhao Zhang · Aryan Mokhtari · Suvrit Sra · Ali Jadbabaie -
2018 Oral: Optimal Algorithms for Non-Smooth Distributed Optimization in Networks »
Kevin Scaman · Francis Bach · Sebastien Bubeck · Laurent Massoulié · Yin Tat Lee -
2018 Poster: Relating Leverage Scores and Density using Regularized Christoffel Functions »
Edouard Pauwels · Francis Bach · Jean-Philippe Vert -
2018 Poster: Efficient Algorithms for Non-convex Isotonic Regression through Submodular Optimization »
Francis Bach -
2018 Poster: Rest-Katyusha: Exploiting the Solution's Structure via Scheduled Restart Schemes »
Junqi Tang · Mohammad Golbabaee · Francis Bach · Mike Davies -
2018 Poster: Exponentiated Strongly Rayleigh Distributions »
Zelda Mariet · Suvrit Sra · Stefanie Jegelka -
2018 Poster: SING: Symbol-to-Instrument Neural Generator »
Alexandre Defossez · Neil Zeghidour · Nicolas Usunier · Leon Bottou · Francis Bach -
2018 Poster: On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport »
Lénaïc Chizat · Francis Bach -
2018 Tutorial: Negative Dependence, Stable Polynomials, and All That »
Suvrit Sra · Stefanie Jegelka -
2017 : Concluding remarks »
Francis Bach · Benjamin Guedj · Pascal Germain -
2017 : Neil Lawrence, Francis Bach and François Laviolette »
Neil Lawrence · Francis Bach · Francois Laviolette -
2017 : Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance »
Francis Bach -
2017 : Overture »
Benjamin Guedj · Francis Bach · Pascal Germain -
2017 Workshop: (Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights »
Benjamin Guedj · Pascal Germain · Francis Bach -
2017 Workshop: OPT 2017: Optimization for Machine Learning »
Suvrit Sra · Sashank J. Reddi · Alekh Agarwal · Benjamin Recht -
2017 Poster: On Structured Prediction Theory with Calibrated Convex Surrogate Losses »
Anton Osokin · Francis Bach · Simon Lacoste-Julien -
2017 Oral: On Structured Prediction Theory with Calibrated Convex Surrogate Losses »
Anton Osokin · Francis Bach · Simon Lacoste-Julien -
2017 Poster: Elementary Symmetric Polynomials for Optimal Experimental Design »
Zelda Mariet · Suvrit Sra -
2017 Poster: Nonlinear Acceleration of Stochastic Algorithms »
Damien Scieur · Francis Bach · Alexandre d'Aspremont -
2017 Poster: Integration Methods and Optimization Algorithms »
Damien Scieur · Vincent Roulet · Francis Bach · Alexandre d'Aspremont -
2017 Poster: Polynomial time algorithms for dual volume sampling »
Chengtao Li · Stefanie Jegelka · Suvrit Sra -
2016 : Francis Bach. Harder, Better, Faster, Stronger Convergence Rates for Least-Squares Regression. »
Francis Bach -
2016 Workshop: OPT 2016: Optimization for Machine Learning »
Suvrit Sra · Francis Bach · Sashank J. Reddi · Niao He -
2016 : Taming non-convexity via geometry »
Suvrit Sra -
2016 : Submodular Functions: from Discrete to Continuous Domains »
Francis Bach -
2016 Workshop: Nonconvex Optimization for Machine Learning: Theory and Practice »
Hossein Mobahi · Anima Anandkumar · Percy Liang · Stefanie Jegelka · Anna Choromanska -
2016 Workshop: Learning in High Dimensions with Structure »
Nikhil Rao · Prateek Jain · Hsiang-Fu Yu · Ming Yuan · Francis Bach -
2016 Poster: Fast Mixing Markov Chains for Strongly Rayleigh Measures, DPPs, and Constrained Sampling »
Chengtao Li · Suvrit Sra · Stefanie Jegelka -
2016 Poster: Kronecker Determinantal Point Processes »
Zelda Mariet · Suvrit Sra -
2016 Poster: Parameter Learning for Log-supermodular Distributions »
Tatiana Shpakova · Francis Bach -
2016 Poster: Regularized Nonlinear Acceleration »
Damien Scieur · Alexandre d'Aspremont · Francis Bach -
2016 Oral: Regularized Nonlinear Acceleration »
Damien Scieur · Alexandre d'Aspremont · Francis Bach -
2016 Poster: Stochastic Variance Reduction Methods for Saddle-Point Problems »
Balamurugan Palaniappan · Francis Bach -
2016 Poster: PAC-Bayesian Theory Meets Bayesian Inference »
Pascal Germain · Francis Bach · Alexandre Lacoste · Simon Lacoste-Julien -
2016 Poster: Proximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization »
Sashank J. Reddi · Suvrit Sra · Barnabas Poczos · Alexander Smola -
2016 Poster: Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds »
Hongyi Zhang · Sashank J. Reddi · Suvrit Sra -
2016 Poster: Stochastic Optimization for Large-scale Optimal Transport »
Aude Genevay · Marco Cuturi · Gabriel Peyré · Francis Bach -
2016 Tutorial: Large-Scale Optimization: Beyond Stochastic Gradient Descent and Convexity »
Suvrit Sra · Francis Bach -
2015 : Structured Sparsity and convex optimization »
Francis Bach -
2015 : Sharp Analysis of Random Feature Expansions »
Francis Bach -
2015 : Convergence Rates of Kernel Quadrature Rules »
Francis Bach -
2015 Workshop: Optimization for Machine Learning (OPT2015) »
Suvrit Sra · Alekh Agarwal · Leon Bottou · Sashank J. Reddi -
2015 Poster: Matrix Manifold Optimization for Gaussian Mixtures »
Reshad Hosseini · Suvrit Sra -
2015 Poster: On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants »
Sashank J. Reddi · Ahmed Hefny · Suvrit Sra · Barnabas Poczos · Alexander Smola -
2015 Poster: Rethinking LDA: Moment Matching for Discrete ICA »
Anastasia Podosinnikova · Francis Bach · Simon Lacoste-Julien -
2015 Poster: Spectral Norm Regularization of Orthonormal Representations for Graph Transduction »
Rakesh Shivanna · Bibaswan K Chatterjee · Raman Sankaran · Chiranjib Bhattacharyya · Francis Bach -
2014 Workshop: Discrete Optimization in Machine Learning »
Jeffrey A Bilmes · Andreas Krause · Stefanie Jegelka · S Thomas McCormick · Sebastian Nowozin · Yaron Singer · Dhruv Batra · Volkan Cevher -
2014 Workshop: OPT2014: Optimization for Machine Learning »
Zaid Harchaoui · Suvrit Sra · Alekh Agarwal · Martin Jaggi · Miro Dudik · Aaditya Ramdas · Jean Lasserre · Yoshua Bengio · Amir Beck -
2014 Poster: Efficient Structured Matrix Rank Minimization »
Adams Wei Yu · Wanli Ma · Yaoliang Yu · Jaime Carbonell · Suvrit Sra -
2014 Poster: Parallel Double Greedy Submodular Maximization »
Xinghao Pan · Stefanie Jegelka · Joseph Gonzalez · Joseph K Bradley · Michael Jordan -
2014 Poster: Submodular meets Structured: Finding Diverse Subsets in Exponentially-Large Structured Item Sets »
Adarsh Prasad · Stefanie Jegelka · Dhruv Batra -
2014 Poster: Metric Learning for Temporal Sequence Alignment »
Rémi Lajugie · Damien Garreau · Francis Bach · Sylvain Arlot -
2014 Spotlight: Submodular meets Structured: Finding Diverse Subsets in Exponentially-Large Structured Item Sets »
Adarsh Prasad · Stefanie Jegelka · Dhruv Batra -
2014 Poster: SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives »
Aaron Defazio · Francis Bach · Simon Lacoste-Julien -
2014 Poster: On the Convergence Rate of Decomposable Submodular Function Minimization »
Robert Nishihara · Stefanie Jegelka · Michael Jordan -
2014 Poster: Weakly-supervised Discovery of Visual Pattern Configurations »
Hyun Oh Song · Yong Jae Lee · Stefanie Jegelka · Trevor Darrell -
2013 Workshop: Discrete Optimization in Machine Learning: Connecting Theory and Practice »
Stefanie Jegelka · Andreas Krause · Pradeep Ravikumar · Kazuo Murota · Jeffrey A Bilmes · Yisong Yue · Michael Jordan -
2013 Workshop: OPT2013: Optimization for Machine Learning »
Suvrit Sra · Alekh Agarwal -
2013 Poster: Geometric optimisation on positive definite matrices for elliptically contoured distributions »
Suvrit Sra · Reshad Hosseini -
2013 Poster: Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n) »
Francis Bach · Eric Moulines -
2013 Spotlight: Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n) »
Francis Bach · Eric Moulines -
2013 Poster: Optimistic Concurrency Control for Distributed Unsupervised Learning »
Xinghao Pan · Joseph Gonzalez · Stefanie Jegelka · Tamara Broderick · Michael Jordan -
2013 Session: Oral Session 2 »
Francis Bach -
2013 Poster: Convex Relaxations for Permutation Problems »
Fajwel Fogel · Rodolphe Jenatton · Francis Bach · Alexandre d'Aspremont -
2013 Poster: Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions »
Rishabh K Iyer · Stefanie Jegelka · Jeffrey A Bilmes -
2013 Session: Tutorial Session B »
Francis Bach -
2012 Workshop: Optimization for Machine Learning »
Suvrit Sra · Alekh Agarwal -
2012 Workshop: Analysis Operator Learning vs. Dictionary Learning: Fraternal Twins in Sparse Modeling »
Martin Kleinsteuber · Francis Bach · Remi Gribonval · John Wright · Simon Hawe -
2012 Workshop: Discrete Optimization in Machine Learning (DISCML): Structure and Scalability »
Stefanie Jegelka · Andreas Krause · Jeffrey A Bilmes · Pradeep Ravikumar -
2012 Poster: Multiple Operator-valued Kernel Learning »
Hachem Kadri · Alain Rakotomamonjy · Francis Bach · philippe preux -
2012 Poster: A new metric on the manifold of kernel matrices with application to matrix geometric means »
Suvrit Sra -
2012 Poster: A Stochastic Gradient Method with an Exponential Convergence
Rate for Finite Training Sets »
Nicolas Le Roux · Mark Schmidt · Francis Bach -
2012 Oral: A Stochastic Gradient Method with an Exponential Convergence
Rate for Finite Training Sets »
Nicolas Le Roux · Mark Schmidt · Francis Bach -
2012 Poster: Scalable nonconvex inexact proximal splitting »
Suvrit Sra -
2011 Workshop: Optimization for Machine Learning »
Suvrit Sra · Stephen Wright · Sebastian Nowozin -
2011 Workshop: Sparse Representation and Low-rank Approximation »
Ameet S Talwalkar · Lester W Mackey · Mehryar Mohri · Michael W Mahoney · Francis Bach · Mike Davies · Remi Gribonval · Guillaume R Obozinski -
2011 Poster: Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization »
Mark Schmidt · Nicolas Le Roux · Francis Bach -
2011 Poster: Fast approximate submodular minimization »
Stefanie Jegelka · Hui Lin · Jeffrey A Bilmes -
2011 Oral: Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization »
Mark Schmidt · Nicolas Le Roux · Francis Bach -
2011 Poster: Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning »
Francis Bach · Eric Moulines -
2011 Poster: Trace Lasso: a trace norm regularization for correlated designs »
Edouard Grave · Guillaume R Obozinski · Francis Bach -
2011 Spotlight: Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning »
Francis Bach · Eric Moulines -
2011 Poster: Shaping Level Sets with Submodular Functions »
Francis Bach -
2010 Workshop: New Directions in Multiple Kernel Learning »
Marius Kloft · Ulrich Rueckert · Cheng Soon Ong · Alain Rakotomamonjy · Soeren Sonnenburg · Francis Bach -
2010 Workshop: Discrete Optimization in Machine Learning: Structures, Algorithms and Applications »
Andreas Krause · Pradeep Ravikumar · Jeffrey A Bilmes · Stefanie Jegelka -
2010 Workshop: Numerical Mathematics Challenges in Machine Learning »
Matthias Seeger · Suvrit Sra -
2010 Workshop: Optimization for Machine Learning »
Suvrit Sra · Sebastian Nowozin · Stephen Wright -
2010 Spotlight: Online Learning for Latent Dirichlet Allocation »
Matthew D. Hoffman · David Blei · Francis Bach -
2010 Poster: Efficient Optimization for Discriminative Latent Class Models »
Armand Joulin · Francis Bach · Jean A Ponce -
2010 Poster: Online Learning for Latent Dirichlet Allocation »
Matthew D. Hoffman · David Blei · Francis Bach -
2010 Oral: Structured sparsity-inducing norms through submodular functions »
Francis Bach -
2010 Poster: Structured sparsity-inducing norms through submodular functions »
Francis Bach -
2010 Poster: Network Flow Algorithms for Structured Sparsity »
Julien Mairal · Rodolphe Jenatton · Guillaume R Obozinski · Francis Bach -
2009 Workshop: Optimization for Machine Learning »
Sebastian Nowozin · Suvrit Sra · S.V.N Vishwanthan · Stephen Wright -
2009 Workshop: Understanding Multiple Kernel Learning Methods »
Brian McFee · Gert Lanckriet · Francis Bach · Nati Srebro -
2009 Poster: Data-driven calibration of linear estimators with minimal penalties »
Sylvain Arlot · Francis Bach -
2009 Poster: Asymptotically Optimal Regularization in Smooth Parametric Models »
Percy Liang · Francis Bach · Guillaume Bouchard · Michael Jordan -
2009 Tutorial: Sparse Methods for Machine Learning: Theory and Algorithms »
Francis Bach -
2008 Workshop: Optimization for Machine Learning »
Suvrit Sra · Sebastian Nowozin · Vishwanathan S V N -
2008 Poster: Clustered Multi-Task Learning: A Convex Formulation »
Laurent Jacob · Francis Bach · Jean-Philippe Vert -
2008 Poster: Sparse probabilistic projections »
Cedric Archambeau · Francis Bach -
2008 Spotlight: Sparse probabilistic projections »
Cedric Archambeau · Francis Bach -
2008 Spotlight: Clustered Multi-Task Learning: A Convex Formulation »
Laurent Jacob · Francis Bach · Jean-Philippe Vert -
2008 Poster: Exploring Large Feature Spaces with Hierarchical Multiple Kernel Learning »
Francis Bach -
2008 Poster: Kernel Change-point Analysis »
Zaid Harchaoui · Francis Bach · Eric Moulines -
2008 Poster: SDL: Supervised Dictionary Learning »
Julien Mairal · Francis Bach · Jean A Ponce · Guillermo Sapiro · Andrew Zisserman -
2007 Poster: Testing for Homogeneity with Kernel Fisher Discriminant Analysis »
Zaid Harchaoui · Francis Bach · Moulines Eric -
2007 Poster: DIFFRAC: a discriminative and flexible framework for clustering »
Francis Bach · Zaid Harchaoui -
2007 Session: Session 2: Probabilistic Optimization »
Francis Bach -
2006 Poster: Active learning for misspecified generalized linear models »
Francis Bach