Timezone: »
Poster
Statistical Active Learning Algorithms
Maria-Florina F Balcan · Vitaly Feldman
Sat Dec 07 07:00 PM -- 11:59 PM (PST) @ Harrah's Special Events Center, 2nd Floor
We describe a framework for designing efficient active learning algorithms that are tolerant to random classification noise. The framework is based on active learning algorithms that are statistical in the sense that they rely on estimates of expectations of functions of filtered random examples. It builds on the powerful statistical query framework of Kearns (1993). We show that any efficient active statistical learning algorithm can be automatically converted to an efficient active learning algorithm which is tolerant to random classification noise as well as other forms of "uncorrelated" noise. The complexity of the resulting algorithms has information-theoretically optimal quadratic dependence on $1/(1-2\eta)$, where $\eta$ is the noise rate. We demonstrate the power of our framework by showing that commonly studied concept classes including thresholds, rectangles, and linear separators can be efficiently actively learned in our framework. These results combined with our generic conversion lead to the first known computationally-efficient algorithms for actively learning some of these concept classes in the presence of random classification noise that provide exponential improvement in the dependence on the error $\epsilon$ over their passive counterparts. In addition, we show that our algorithms can be automatically converted to efficient active differentially-private algorithms. This leads to the first differentially-private active learning algorithms with exponential label savings over the passive case.
Author Information
Maria-Florina F Balcan (Georgia Tech)
Vitaly Feldman (Apple)
More from the Same Authors
-
2020 : Individual Privacy Accounting via a Rényi Filter »
Vitaly Feldman -
2020 : Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy Amplification by Shuffling »
Vitaly Feldman -
2021 : Mean Estimation with User-level Privacy under Data Heterogeneity »
Rachel Cummings · Vitaly Feldman · Audra McMillan · Kunal Talwar -
2023 Poster: Fast Optimal Locally Private Mean Estimation via Random Projections »
Hilal Asi · Vitaly Feldman · Jelani Nelson · Huy Nguyen · Kunal Talwar -
2022 Poster: Mean Estimation with User-level Privacy under Data Heterogeneity »
Rachel Cummings · Vitaly Feldman · Audra McMillan · Kunal Talwar -
2022 Poster: Subspace Recovery from Heterogeneous Data with Non-isotropic Noise »
John Duchi · Vitaly Feldman · Lunjia Hu · Kunal Talwar -
2021 Poster: Individual Privacy Accounting via a Rényi Filter »
Vitaly Feldman · Tijana Zrnic -
2020 Poster: What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation »
Vitaly Feldman · Chiyuan Zhang -
2020 Spotlight: What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation »
Vitaly Feldman · Chiyuan Zhang -
2020 Poster: Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses »
Raef Bassily · Vitaly Feldman · Cristóbal Guzmán · Kunal Talwar -
2020 Spotlight: Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses »
Raef Bassily · Vitaly Feldman · Cristóbal Guzmán · Kunal Talwar -
2019 : Private Stochastic Convex Optimization: Optimal Rates in Linear Time »
Vitaly Feldman · Tomer Koren · Kunal Talwar -
2019 : Poster Session »
Clement Canonne · Kwang-Sung Jun · Seth Neel · Di Wang · Giuseppe Vietri · Liwei Song · Jonathan Lebensold · Huanyu Zhang · Lovedeep Gondara · Ang Li · FatemehSadat Mireshghallah · Jinshuo Dong · Anand D Sarwate · Antti Koskela · Joonas Jälkö · Matt Kusner · Dingfan Chen · Mi Jung Park · Ashwin Machanavajjhala · Jayashree Kalpathy-Cramer · · Vitaly Feldman · Andrew Tomkins · Hai Phan · Hossein Esfandiari · Mimansa Jaiswal · Mrinank Sharma · Jeff Druce · Casey Meehan · Zhengli Zhao · Hsiang Hsu · Davis Railsback · Abraham Flaxman · · Julius Adebayo · Aleksandra Korolova · Jiaming Xu · Naoise Holohan · Samyadeep Basu · Matthew Joseph · My Thai · Xiaoqian Yang · Ellen Vitercik · Michael Hutchinson · Chenghong Wang · Gregory Yauney · Yuchao Tao · Chao Jin · Si Kai Lee · Audra McMillan · Rauf Izmailov · Jiayi Guo · Siddharth Swaroop · Tribhuvanesh Orekondy · Hadi Esmaeilzadeh · Kevin Procopio · Alkis Polyzotis · Jafar Mohammadi · Nitin Agrawal -
2019 Poster: Private Stochastic Convex Optimization with Optimal Rates »
Raef Bassily · Vitaly Feldman · Kunal Talwar · Abhradeep Guha Thakurta -
2019 Spotlight: Private Stochastic Convex Optimization with Optimal Rates »
Raef Bassily · Vitaly Feldman · Kunal Talwar · Abhradeep Guha Thakurta -
2019 Poster: Locally Private Learning without Interaction Requires Separation »
Amit Daniely · Vitaly Feldman -
2018 : Contributed talk 1: Privacy Amplification by Iteration »
Vitaly Feldman -
2018 Poster: The Everlasting Database: Statistical Validity at a Fair Price »
Blake Woodworth · Vitaly Feldman · Saharon Rosset · Nati Srebro -
2018 Poster: Generalization Bounds for Uniformly Stable Algorithms »
Vitaly Feldman · Jan Vondrak -
2018 Spotlight: Generalization Bounds for Uniformly Stable Algorithms »
Vitaly Feldman · Jan Vondrak -
2016 : Vitaly Feldman »
Vitaly Feldman -
2016 Workshop: Adaptive Data Analysis »
Vitaly Feldman · Aaditya Ramdas · Aaron Roth · Adam Smith -
2016 Poster: Generalization of ERM in Stochastic Convex Optimization: The Dimension Strikes Back »
Vitaly Feldman -
2016 Oral: Generalization of ERM in Stochastic Convex Optimization: The Dimension Strikes Back »
Vitaly Feldman -
2015 Workshop: Adaptive Data Analysis »
Adam Smith · Aaron Roth · Vitaly Feldman · Moritz Hardt -
2015 Poster: Generalization in Adaptive Data Analysis and Holdout Reuse »
Cynthia Dwork · Vitaly Feldman · Moritz Hardt · Toni Pitassi · Omer Reingold · Aaron Roth -
2015 Poster: Subsampled Power Iteration: a Unified Algorithm for Block Models and Planted CSP's »
Vitaly Feldman · Will Perkins · Santosh Vempala -
2014 Poster: Improved Distributed Principal Component Analysis »
Yingyu Liang · Maria-Florina F Balcan · Vandana Kanchanapally · David Woodruff -
2014 Poster: Active Learning and Best-Response Dynamics »
Maria-Florina F Balcan · Christopher Berlind · Avrim Blum · Emma Cohen · Kaushik Patnaik · Le Song -
2014 Poster: Learning Time-Varying Coverage Functions »
Nan Du · Yingyu Liang · Maria-Florina F Balcan · Le Song -
2014 Poster: Scalable Kernel Methods via Doubly Stochastic Gradients »
Bo Dai · Bo Xie · Niao He · Yingyu Liang · Anant Raj · Maria-Florina F Balcan · Le Song -
2013 Poster: Distributed k-means and k-median clustering on general communication topologies »
Maria-Florina F Balcan · Steven Ehrlich · Yingyu Liang -
2008 Workshop: New Challanges in Theoretical Machine Learning: Data Dependent Concept Spaces »
Maria-Florina F Balcan · Shai Ben-David · Avrim Blum · Kristiaan Pelckmans · John Shawe-Taylor