Timezone: »
Author Information
Karthika Mohan (UC Berkeley)
Judea Pearl (UCLA)
Judea Pearl is a professor of computer science and statistics at UCLA. He is a graduate of the Technion, Israel, and has joined the faculty of UCLA in 1970, where he conducts research in artificial intelligence, causal inference and philosophy of science. Pearl has authored three books: Heuristics (1984), Probabilistic Reasoning (1988), and Causality (2000;2009), the latter won the Lakatos Prize from the London School of Economics. He is a member of the National Academy of Engineering, the American Academy of Arts and Sciences, and a Fellow of the IEEE, AAAI and the Cognitive Science Society. Pearl received the 2008 Benjamin Franklin Medal from the Franklin Institute and the 2011 Rumelhart Prize from the Cognitive Science Society. In 2012, he received the Technion's Harvey Prize and the ACM Alan M. Turing Award.
Jin Tian (Iowa State University)
Related Events (a corresponding poster, oral, or spotlight)
-
2013 Spotlight: Graphical Models for Inference with Missing Data »
Fri. Dec 6th 08:04 -- 08:08 PM Room Harvey's Convention Center Floor, CC
More from the Same Authors
-
2021 Spotlight: Double Machine Learning Density Estimation for Local Treatment Effects with Instruments »
Yonghan Jung · Jin Tian · Elias Bareinboim -
2022 : Probabilities of Causation: Adequate Size of Experimental and Observational Samples »
Ang Li · Ruirui Mao · Judea Pearl -
2022 : Unit Selection: Learning Benefit Function from Finite Population Data »
Ang Li · Song Jiang · Yizhou Sun · Judea Pearl -
2023 Poster: Estimating Causal Effects Identifiable from Combination of Observations and Experiments »
Yonghan Jung · Ivan Diaz · Jin Tian · Elias Bareinboim -
2022 : Opening Keynote for nCSI »
Judea Pearl -
2022 Poster: Finding and Listing Front-door Adjustment Sets »
Hyunchai Jeong · Jin Tian · Elias Bareinboim -
2022 Poster: Causal Inference with Non-IID Data using Linear Graphical Models »
Chi Zhang · Karthika Mohan · Judea Pearl -
2021 Workshop: Causal Inference & Machine Learning: Why now? »
Elias Bareinboim · Bernhard Schölkopf · Terrence Sejnowski · Yoshua Bengio · Judea Pearl -
2021 Poster: Double Machine Learning Density Estimation for Local Treatment Effects with Instruments »
Yonghan Jung · Jin Tian · Elias Bareinboim -
2020 Poster: Learning Causal Effects via Weighted Empirical Risk Minimization »
Yonghan Jung · Jin Tian · Elias Bareinboim -
2017 : Contributed Talk 4 »
Judea Pearl -
2017 : Poster session »
Abbas Zaidi · Christoph Kurz · David Heckerman · YiJyun Lin · Stefan Riezler · Ilya Shpitser · Songbai Yan · Olivier Goudet · Yash Deshpande · Judea Pearl · Jovana Mitrovic · Brian Vegetabile · Tae Hwy Lee · Karen Sachs · Karthika Mohan · Reagan Rose · Julius Ramakers · Negar Hassanpour · Pierre Baldi · Razieh Nabi · Noah Hammarlund · Eli Sherman · Carolin Lawrence · Fattaneh Jabbari · Vira Semenova · Maria Dimakopoulou · Pratik Gajane · Russell Greiner · Ilias Zadik · Alexander Blocker · Hao Xu · Tal EL HAY · Tony Jebara · Benoit Rostykus -
2015 Poster: Bandits with Unobserved Confounders: A Causal Approach »
Elias Bareinboim · Andrew Forney · Judea Pearl -
2014 Poster: Transportability from Multiple Environments with Limited Experiments: Completeness Results »
Elias Bareinboim · Judea Pearl -
2014 Poster: Graphical Models for Recovering Probabilistic and Causal Queries from Missing Data »
Karthika Mohan · Judea Pearl -
2014 Spotlight: Transportability from Multiple Environments with Limited Experiments: Completeness Results »
Elias Bareinboim · Judea Pearl -
2013 Poster: Transportability from Multiple Environments with Limited Experiments »
Elias Bareinboim · Sanghack Lee · Vasant Honavar · Judea Pearl -
2013 Tutorial: Causes and Counterfactuals: Concepts, Principles and Tools. »
Judea Pearl · Elias Bareinboim