Timezone: »

 
Poster
Neural representation of action sequences: how far can a simple snippet-matching model take us?
Cheston Tan · Jedediah M Singer · Thomas Serre · David Sheinberg · Tomaso Poggio

Fri Dec 06 07:00 PM -- 11:59 PM (PST) @ Harrah's Special Events Center, 2nd Floor

The macaque Superior Temporal Sulcus (STS) is a brain area that receives and integrates inputs from both the ventral and dorsal visual processing streams (thought to specialize in form and motion processing respectively). For the processing of articulated actions, prior work has shown that even a small population of STS neurons contains sufficient information for the decoding of actor invariant to action, action invariant to actor, as well as the specific conjunction of actor and action. This paper addresses two questions. First, what are the invariance properties of individual neural representations (rather than the population representation) in STS? Second, what are the neural encoding mechanisms that can produce such individual neural representations from streams of pixel images? We find that a baseline model, one that simply computes a linear weighted sum of ventral and dorsal responses to short action “snippets”, produces surprisingly good fits to the neural data. Interestingly, even using inputs from a single stream, both actor-invariance and action-invariance can be produced simply by having different linear weights.

Author Information

Cheston Tan (Institute for Infocomm Research, Singapore)
Jedediah M Singer (Boston Children's Hospital)
Thomas Serre (Brown University)
David Sheinberg (Brown University)
Tomaso Poggio (MIT)

Tomaso A. Poggio, is the Eugene McDermott Professor in the Dept. of Brain & Cognitive Sciences at MIT and the director of the new NSF Center for Brains, Minds and Machines at MIT of which MIT and Harvard are the main member Institutions. He is a member of both the Computer Science and Artificial Intelligence Laboratory and of the McGovern Brain Institute. He is an honorary member of the Neuroscience Research Program, a member of the American Academy of Arts and Sciences, a Founding Fellow of AAAI and a founding member of the McGovern Institute for Brain Research. Among other honors he received the Laurea Honoris Causa from the University of Pavia for the Volta Bicentennial, the 2003 Gabor Award, the Okawa Prize 2009, the AAAS Fellowship and the 2014 Swartz Prize for Theoretical and Computational Neuroscience. He is one of the most cited computational scientists with contributions ranging from the biophysical and behavioral studies of the visual system to the computational analyses of vision and learning in humans and machines. With W. Reichardt he characterized quantitatively the visuo-motor control system in the fly. With D. Marr, he introduced the seminal idea of levels of analysis in computational neuroscience. He introduced regularization as a mathematical framework to approach the ill-posed problems of vision and the key problem of learning from data. In the last decade he has developed an influential hierarchical model of visual recognition in the visual cortex. The citation for the recent 2009 Okawa prize mentions his “…outstanding contributions to the establishment of computational neuroscience, and pioneering researches ranging from the biophysical and behavioral studies of the visual system to the computational analysis of vision and learning in humans and machines.” His research has always been interdisciplinary, between brains and computers. It is now focused on the mathematics of learning theory, the applications of learning techniques to computer vision and especially on computational neuroscience of the visual cortex. A former Corporate Fellow of Thinking Machines Corporation and a former director of PHZ Capital Partners, Inc., he is a director of Mobileye and was involved in starting, or investing in, several other high tech companies including Arris Pharmaceutical, nFX, Imagen, Digital Persona and Deep Mind. Tomaso Poggio Eugene McDermott Professor Director NSF Science & Technology Center for Brains, Minds and Machines(CBMM) http://cbmm.mit.edu/ Core founding scientific advisor, MIT Quest for Intelligence McGovern Institute CSAIL (Computer Science and Artificial Intelligence Lab) Brain Sciences Department M.I.T., 46-5177B see http://whereis.mit.edu/?selection=46&Buildings=go 43 Vassar Street Cambridge, MA 02142 E-mail: tp@ai.mit.edu Phone: 617-253-5230 Fax: 617-253-2964 Web: http://cbcl.mit.edu/people/poggio/poggio-new.htm PoggioLab Web page: http://cbcl.mit.edu/

More from the Same Authors