Timezone: »
This paper presents Correlated Nystrom Views (XNV), a fast semi-supervised algorithm for regression and classification. The algorithm draws on two main ideas. First, it generates two views consisting of computationally inexpensive random features. Second, multiview regression, using Canonical Correlation Analysis (CCA) on unlabeled data, biases the regression towards useful features. It has been shown that CCA regression can substantially reduce variance with a minimal increase in bias if the views contains accurate estimators. Recent theoretical and empirical work shows that regression with random features closely approximates kernel regression, implying that the accuracy requirement holds for random views. We show that XNV consistently outperforms a state-of-the-art algorithm for semi-supervised learning: substantially improving predictive performance and reducing the variability of performance on a wide variety of real-world datasets, whilst also reducing runtime by orders of magnitude.
Author Information
Brian McWilliams (DeepMind)
David Balduzzi (Victoria University Wellington)
Joachim M Buhmann (ETH Zurich)
More from the Same Authors
-
2022 Poster: Learning to Drop Out: An Adversarial Approach to Training Sequence VAEs »
Djordje Miladinovic · Kumar Shridhar · Kushal Jain · Max Paulus · Joachim M Buhmann · Carl Allen -
2022 Poster: Learning Long-Term Crop Management Strategies with CyclesGym »
Matteo Turchetta · Luca Corinzia · Scott Sussex · Amanda Burton · Juan Herrera · Ioannis Athanasiadis · Joachim M Buhmann · Andreas Krause -
2017 Poster: Efficient and Flexible Inference for Stochastic Systems »
Stefan Bauer · Nico S Gorbach · Djordje Miladinovic · Joachim M Buhmann -
2017 Poster: Non-monotone Continuous DR-submodular Maximization: Structure and Algorithms »
Yatao Bian · Kfir Levy · Andreas Krause · Joachim M Buhmann -
2017 Poster: Scalable Variational Inference for Dynamical Systems »
Nico S Gorbach · Stefan Bauer · Joachim M Buhmann -
2016 Poster: Scalable Adaptive Stochastic Optimization Using Random Projections »
Gabriel Krummenacher · Brian McWilliams · Yannic Kilcher · Joachim M Buhmann · Nicolai Meinshausen -
2015 Poster: Variance Reduced Stochastic Gradient Descent with Neighbors »
Thomas Hofmann · Aurelien Lucchi · Simon Lacoste-Julien · Brian McWilliams -
2014 Poster: Fast and Robust Least Squares Estimation in Corrupted Linear Models »
Brian McWilliams · Gabriel Krummenacher · Mario Lucic · Joachim M Buhmann -
2014 Spotlight: Fast and Robust Least Squares Estimation in Corrupted Linear Models »
Brian McWilliams · Gabriel Krummenacher · Mario Lucic · Joachim M Buhmann -
2012 Poster: Towards a learning-theoretic analysis of spike-timing dependent plasticity »
David Balduzzi · Michel Besserve -
2012 Poster: A Nonparametric Conjugate Prior Distribution for the Maximizing Argument of a Noisy Function »
Pedro Ortega · Tim Genewein · Jordi Grau-Moya · David Balduzzi · Daniel A Braun -
2011 Workshop: Philosophy and Machine Learning »
Marcello Pelillo · Joachim M Buhmann · Tiberio Caetano · Bernhard Schölkopf · Larry Wasserman -
2006 Poster: Denoising and Dimension Reduction in Feature Space »
Mikio L Braun · Joachim M Buhmann · Klaus-Robert Müller