Timezone: »
Learning dynamic models from observed data has been a central issue in many scientific studies or engineering tasks. The usual setting is that data are collected sequentially from trajectories of some dynamical system operation. In quite a few modern scientific modeling tasks, however, it turns out that reliable sequential data are rather difficult to gather, whereas out-of-order snapshots are much easier to obtain. Examples include the modeling of galaxies, chronic diseases such Alzheimer's, or certain biological processes. Existing methods for learning dynamic model from non-sequence data are mostly based on Expectation-Maximization, which involves non-convex optimization and is thus hard to analyze. Inspired by recent advances in spectral learning methods, we propose to study this problem from a different perspective: moment matching and spectral decomposition. Under that framework, we identify reasonable assumptions on the generative process of non-sequence data, and propose learning algorithms based on the tensor decomposition method \cite{anandkumar2012tensor} to \textit{provably} recover first-order Markov models and hidden Markov models. To the best of our knowledge, this is the first formal guarantee on learning from non-sequence data. Preliminary simulation results confirm our theoretical findings.
Author Information
Tzu-Kuo Huang (Microsoft)
Jeff Schneider (CMU)
More from the Same Authors
-
2022 Poster: Exploration via Planning for Information about the Optimal Trajectory »
Viraj Mehta · Ian Char · Joseph Abbate · Rory Conlin · Mark Boyer · Stefano Ermon · Jeff Schneider · Willie Neiswanger -
2021 : Bayesian Active Reinforcement Learning »
Viraj Mehta · Biswajit Paria · Jeff Schneider · Willie Neiswanger -
2021 : Reinforcement Learning for Autonomous Driving »
Jeff Schneider · Jeff Schneider -
2021 Poster: Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification »
Youngseog Chung · Willie Neiswanger · Ian Char · Jeff Schneider -
2019 : Coffee + Posters »
Benjamin Caine · Renhao Wang · Nazmus Sakib · Nana Otawara · Meha Kaushik · elmira amirloo · Nemanja Djuric · Johanna Rock · Tanmay Agarwal · Angelos Filos · Panagiotis Tigkas · Donsuk Lee · Wootae Jeon · Nikita Jaipuria · Pin Wang · Jinxin Zhao · Liangjun Zhang · Ashutosh Singh · Ershad Banijamali · Mohsen Rohani · Aman Sinha · Ameya Joshi · Ching-Yao Chan · Mohammed Abdou · Changhao Chen · Jong-Chan Kim · eslam mohamed · Matt OKelly · Nirvan Singhania · Hiroshi Tsukahara · Atsushi Keyaki · Praveen Palanisamy · Justin Norden · Micol Marchetti-Bowick · Yiming Gu · Hitesh Arora · Shubhankar Deshpande · Jeff Schneider · Shangling Jui · Vaneet Aggarwal · Tryambak Gangopadhyay · Qiaojing Yan -
2019 Poster: Offline Contextual Bayesian Optimization »
Ian Char · Youngseog Chung · Willie Neiswanger · Kirthevasan Kandasamy · Oak Nelson · Mark Boyer · Egemen Kolemen · Jeff Schneider -
2018 Poster: Neural Architecture Search with Bayesian Optimisation and Optimal Transport »
Kirthevasan Kandasamy · Willie Neiswanger · Jeff Schneider · Barnabas Poczos · Eric Xing -
2018 Spotlight: Neural Architecture Search with Bayesian Optimisation and Optimal Transport »
Kirthevasan Kandasamy · Willie Neiswanger · Jeff Schneider · Barnabas Poczos · Eric Xing -
2016 Poster: The Multi-fidelity Multi-armed Bandit »
Kirthevasan Kandasamy · Gautam Dasarathy · Barnabas Poczos · Jeff Schneider -
2016 Poster: Gaussian Process Bandit Optimisation with Multi-fidelity Evaluations »
Kirthevasan Kandasamy · Gautam Dasarathy · Junier B Oliva · Jeff Schneider · Barnabas Poczos -
2015 : Bayesian Optimization and Embedded Learning Systems »
Jeff Schneider -
2015 Poster: Efficient and Parsimonious Agnostic Active Learning »
Tzu-Kuo Huang · Alekh Agarwal · Daniel Hsu · John Langford · Robert Schapire -
2015 Spotlight: Efficient and Parsimonious Agnostic Active Learning »
Tzu-Kuo Huang · Alekh Agarwal · Daniel Hsu · John Langford · Robert Schapire -
2014 Poster: Flexible Transfer Learning under Support and Model Shift »
Xuezhi Wang · Jeff Schneider -
2013 Poster: Σ-Optimality for Active Learning on Gaussian Random Fields »
Yifei Ma · Roman Garnett · Jeff Schneider -
2011 Poster: Group Anomaly Detection using Flexible Genre Models »
Liang Xiong · Barnabas Poczos · Jeff Schneider -
2011 Poster: Learning Auto-regressive Models from Sequence and Non-sequence Data »
Tzu-Kuo Huang · Jeff Schneider -
2010 Poster: Learning Multiple Tasks with a Sparse Matrix-Normal Penalty »
Yi Zhang · Jeff Schneider -
2008 Poster: Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text »
Yi Zhang · Jeff Schneider · Artur Dubrawski