Timezone: »
Poster
Using multiple samples to learn mixture models
Jason D Lee · Ran Gilad-Bachrach · Rich Caruana
Sat Dec 07 07:00 PM -- 11:59 PM (PST) @ Harrah's Special Events Center, 2nd Floor
In the mixture models problem it is assumed that there are $K$ distributions $\theta_{1},\ldots,\theta_{K}$ and one gets to observe a sample from a mixture of these distributions with unknown coefficients. The goal is to associate instances with their generating distributions, or to identify the parameters of the hidden distributions. In this work we make the assumption that we have access to several samples drawn from the same $K$ underlying distributions, but with different mixing weights. As with topic modeling, having multiple samples is often a reasonable assumption. Instead of pooling the data into one sample, we prove that it is possible to use the differences between the samples to better recover the underlying structure. We present algorithms that recover the underlying structure under milder assumptions than the current state of art when either the dimensionality or the separation is high. The methods, when applied to topic modeling, allow generalization to words not present in the training data.
Author Information
Jason D Lee (Princeton University)
Ran Gilad-Bachrach (Microsoft Research)
Rich Caruana (Microsoft)
Related Events (a corresponding poster, oral, or spotlight)
-
2013 Spotlight: Using multiple samples to learn mixture models »
Sun. Dec 8th 01:52 -- 01:56 AM Room Harvey's Convention Center Floor, CC
More from the Same Authors
-
2021 Spotlight: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2021 : GAM Changer: Editing Generalized Additive Models with Interactive Visualization »
Zijie Jay Wang · Harsha Nori · Duen Horng Chau · Jennifer Wortman Vaughan · Rich Caruana -
2021 : Invited talk (ML) - Rich Caruana »
Rich Caruana -
2021 Poster: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2019 Poster: Efficient Forward Architecture Search »
Hanzhang Hu · John Langford · Rich Caruana · Saurajit Mukherjee · Eric Horvitz · Debadeepta Dey -
2018 : Panel Discussion »
Rich Caruana · Mike Schuster · Ralf Schlüter · Hynek Hermansky · Renato De Mori · Samy Bengio · Michiel Bacchiani · Jason Eisner -
2018 : Rich Caruana, "Friends Don’t Let Friends Deploy Black-Box Models: The Importance of Intelligibility in Machine Learning" »
Rich Caruana -
2018 : Panel on research process »
Zachary Lipton · Charles Sutton · Finale Doshi-Velez · Hanna Wallach · Suchi Saria · Rich Caruana · Thomas Rainforth -
2018 : Rich Caruna - Justice May Be Blind But It Shouldn’t Be Opaque: The Risk of Using Black-Box Models in Healthcare & Criminal Justice »
Rich Caruana -
2018 Workshop: Critiquing and Correcting Trends in Machine Learning »
Thomas Rainforth · Matt Kusner · Benjamin Bloem-Reddy · Brooks Paige · Rich Caruana · Yee Whye Teh -
2017 : Invited Talk 6 »
Rich Caruana -
2017 : Poster spotlights »
Hiroshi Kuwajima · Masayuki Tanaka · Qingkai Liang · Matthieu Komorowski · Fanyu Que · Thalita F Drumond · Aniruddh Raghu · Leo Anthony Celi · Christina Göpfert · Andrew Ross · Sarah Tan · Rich Caruana · Yin Lou · Devinder Kumar · Graham Taylor · Forough Poursabzi-Sangdeh · Jennifer Wortman Vaughan · Hanna Wallach -
2017 Symposium: Interpretable Machine Learning »
Andrew Wilson · Jason Yosinski · Patrice Simard · Rich Caruana · William Herlands -
2015 : The risk of deploying unintelligible models in healthcare »
Rich Caruana -
2015 Poster: Evaluating the statistical significance of biclusters »
Jason D Lee · Yuekai Sun · Jonathan E Taylor -
2014 Poster: Do Deep Nets Really Need to be Deep? »
Jimmy Ba · Rich Caruana -
2014 Poster: Scalable Methods for Nonnegative Matrix Factorizations of Near-separable Tall-and-skinny Matrices »
Austin Benson · Jason D Lee · Bartek Rajwa · David F Gleich -
2014 Spotlight: Scalable Methods for Nonnegative Matrix Factorizations of Near-separable Tall-and-skinny Matrices »
Austin Benson · Jason D Lee · Bartek Rajwa · David F Gleich -
2014 Poster: Exact Post Model Selection Inference for Marginal Screening »
Jason D Lee · Jonathan E Taylor -
2013 Poster: On model selection consistency of penalized M-estimators: a geometric theory »
Jason D Lee · Yuekai Sun · Jonathan E Taylor -
2012 Poster: Proximal Newton-type Methods for Minimizing Convex Objective Functions in Composite Form »
Jason D Lee · Yuekai Sun · Michael Saunders -
2012 Demonstration: Gait analysis using the Kinect sensor »
Moshe Gabel · Erin Renshaw · Assaf Schuster · Ran Gilad-Bachrach -
2010 Session: Spotlights Session 7 »
Rich Caruana -
2010 Session: Oral Session 8 »
Rich Caruana -
2010 Poster: Practical Large-Scale Optimization for Max-norm Regularization »
Jason D Lee · Benjamin Recht · Russ Salakhutdinov · Nati Srebro · Joel A Tropp