Timezone: »
Poster
Variational Inference for Mahalanobis Distance Metrics in Gaussian Process Regression
Michalis Titsias · Miguel Lazaro-Gredilla
Sat Dec 07 07:00 PM -- 11:59 PM (PST) @ Harrah's Special Events Center, 2nd Floor
We introduce a novel variational method that allows to approximately integrate out kernel hyperparameters, such as length-scales, in Gaussian process regression. This approach consists of a novel variant of the variational framework that has been recently developed for the Gaussian process latent variable model which additionally makes use of a standardised representation of the Gaussian process. We consider this technique for learning Mahalanobis distance metrics in a Gaussian process regression setting and provide experimental evaluations and comparisons with existing methods by considering datasets with high-dimensional inputs.
Author Information
Michalis Titsias (DeepMind)
Miguel Lazaro-Gredilla (Vicarious AI)
More from the Same Authors
-
2022 Spotlight: Lightning Talks 1B-4 »
Andrei Atanov · Shiqi Yang · Wanshan Li · Yongchang Hao · Ziquan Liu · Jiaxin Shi · Anton Plaksin · Jiaxiang Chen · Ziqi Pan · yaxing wang · Yuxin Liu · Stepan Martyanov · Alessandro Rinaldo · Yuhao Zhou · Li Niu · Qingyuan Yang · Andrei Filatov · Yi Xu · Liqing Zhang · Lili Mou · Ruomin Huang · Teresa Yeo · kai wang · Daren Wang · Jessica Hwang · Yuanhong Xu · Qi Qian · Hu Ding · Michalis Titsias · Shangling Jui · Ajay Sohmshetty · Lester Mackey · Joost van de Weijer · Hao Li · Amir Zamir · Xiangyang Ji · Antoni Chan · Rong Jin -
2022 Spotlight: Gradient Estimation with Discrete Stein Operators »
Jiaxin Shi · Yuhao Zhou · Jessica Hwang · Michalis Titsias · Lester Mackey -
2022 Poster: Gradient Estimation with Discrete Stein Operators »
Jiaxin Shi · Yuhao Zhou · Jessica Hwang · Michalis Titsias · Lester Mackey -
2021 Poster: Perturb-and-max-product: Sampling and learning in discrete energy-based models »
Miguel Lazaro-Gredilla · Antoine Dedieu · Dileep George -
2021 Poster: Entropy-based adaptive Hamiltonian Monte Carlo »
Marcel Hirt · Michalis Titsias · Petros Dellaportas -
2017 Workshop: Advances in Approximate Bayesian Inference »
Francisco Ruiz · Stephan Mandt · Cheng Zhang · James McInerney · James McInerney · Dustin Tran · Dustin Tran · David Blei · Max Welling · Tamara Broderick · Michalis Titsias -
2016 Poster: One-vs-Each Approximation to Softmax for Scalable Estimation of Probabilities »
Michalis Titsias -
2016 Poster: The Generalized Reparameterization Gradient »
Francisco Ruiz · Michalis Titsias · David Blei -
2015 Poster: Local Expectation Gradients for Black Box Variational Inference »
Michalis Titsias · Miguel Lázaro-Gredilla -
2014 Poster: Hamming Ball Auxiliary Sampling for Factorial Hidden Markov Models »
Michalis Titsias · Christopher Yau -
2014 Spotlight: Hamming Ball Auxiliary Sampling for Factorial Hidden Markov Models »
Michalis Titsias · Christopher Yau -
2012 Poster: Bayesian Warped Gaussian Processes »
Miguel Lazaro-Gredilla -
2011 Poster: Spike and Slab Variational Inference for Multi-Task and Multiple Kernel Learning »
Michalis Titsias · Miguel Lazaro-Gredilla -
2009 Poster: Inter-domain Gaussian Processes for Sparse Inference using Inducing Features »
Miguel Lazaro-Gredilla · Anibal R Figueiras-Vidal