Timezone: »
Stochastic gradient optimization is a class of widely used algorithms for training machine learning models. To optimize an objective, it uses the noisy gradient computed from the random data samples instead of the true gradient computed from the entire dataset. However, when the variance of the noisy gradient is large, the algorithm might spend much time bouncing around, leading to slower convergence and worse performance. In this paper, we develop a general approach of using control variate for variance reduction in stochastic gradient. Data statistics such as low-order moments (pre-computed or estimated online) is used to form the control variate. We demonstrate how to construct the control variate for two practical problems using stochastic gradient optimization. One is convex---the MAP estimation for logistic regression, and the other is non-convex---stochastic variational inference for latent Dirichlet allocation. On both problems, our approach shows faster convergence and better performance than the classical approach.
Author Information
Chong Wang (CMU)
Xi Chen (NYU)
Xi Chen is an associate professor with tenure at Stern School of Business at New York University, who is also an affiliated professor to Computer Science and Center for Data Science. Before that, he was a Postdoc in the group of Prof. Michael Jordan at UC Berkeley. He obtained his Ph.D. from the Machine Learning Department at Carnegie Mellon University (CMU). He studies high-dimensional statistical learning, online learning, large-scale stochastic optimization, and applications to operations. He has published more than 20 journal articles in statistics, machine learning, and operations, and 30 top machine learning peer-reviewed conference proceedings. He received NSF Career Award, ICSA Outstanding Young Researcher Award, Faculty Research Awards from Google, Adobe, Alibaba, and Bloomberg, and was featured in Forbes list of “30 Under30 in Science”.
Alexander Smola (Amazon)
**AWS Machine Learning**
Eric Xing (Petuum Inc. / Carnegie Mellon University)
More from the Same Authors
-
2021 Spotlight: Mixture Proportion Estimation and PU Learning:A Modern Approach »
Saurabh Garg · Yifan Wu · Alexander Smola · Sivaraman Balakrishnan · Zachary Lipton -
2021 : Benchmarking Multimodal AutoML for Tabular Data with Text Fields »
Xingjian Shi · Jonas Mueller · Nick Erickson · Mu Li · Alexander Smola -
2021 : Learning Large-Time-Step Molecular Dynamics with Graph Neural Networks »
Weihao Gao · Chong Wang -
2021 : Learning to Simulate Unseen Physical Systems with Graph Neural Networks »
Weihao Gao · Chong Wang -
2021 : Multi-modal Self-supervised Pre-training for Large-scale Genome Data »
Shentong Mo · Xi Fu · Chenyang Hong · Yizhen Chen · Yuxuan Zheng · Xiangru Tang · Yanyan Lan · Zhiqiang Shen · Eric Xing -
2022 : RLSBench: A Large-Scale Empirical Study of Domain Adaptation Under Relaxed Label Shift »
Saurabh Garg · Nick Erickson · James Sharpnack · Alexander Smola · Sivaraman Balakrishnan · Zachary Lipton -
2022 : Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation »
yifan zhang · Hanlin Zhang · Zachary Lipton · Li Erran Li · Eric Xing -
2023 Poster: Prompt Pre-Training with Twenty-Thousand Classes for Open-Vocabulary Visual Recognition »
Shuhuai Ren · Aston Zhang · Yi Zhu · Shuai Zhang · Shuai Zheng · Mu Li · Alexander Smola · Xu Sun -
2022 : Sample-Specific Contextualized Graphical Models Using Clinical and Molecular Data Reveal Transcriptional Network Heterogeneity Across 7000 Tumors »
Caleb Ellington · Ben Lengerich · Thomas Watkins · Jiekun Yang · Manolis Kellis · Eric Xing -
2022 Poster: Adaptive Interest for Emphatic Reinforcement Learning »
Martin Klissarov · Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Taesup Kim · Alexander Smola -
2022 Poster: Faster Deep Reinforcement Learning with Slower Online Network »
Kavosh Asadi · Rasool Fakoor · Omer Gottesman · Taesup Kim · Michael Littman · Alexander Smola -
2022 Poster: Graph Reordering for Cache-Efficient Near Neighbor Search »
Benjamin Coleman · Santiago Segarra · Alexander Smola · Anshumali Shrivastava -
2021 Workshop: Math AI for Education (MATHAI4ED): Bridging the Gap Between Research and Smart Education »
Pan Lu · Yuhuai Wu · Sean Welleck · Xiaodan Liang · Eric Xing · James McClelland -
2021 Poster: Mixture Proportion Estimation and PU Learning:A Modern Approach »
Saurabh Garg · Yifan Wu · Alexander Smola · Sivaraman Balakrishnan · Zachary Lipton -
2021 Poster: Deep Explicit Duration Switching Models for Time Series »
Abdul Fatir Ansari · Konstantinos Benidis · Richard Kurle · Ali Caner Turkmen · Harold Soh · Alexander Smola · Bernie Wang · Tim Januschowski -
2021 Poster: Nonuniform Negative Sampling and Log Odds Correction with Rare Events Data »
HaiYing Wang · Aonan Zhang · Chong Wang -
2021 Poster: Multi-task Learning of Order-Consistent Causal Graphs »
Xinshi Chen · Haoran Sun · Caleb Ellington · Eric Xing · Le Song -
2021 Poster: Continuous Doubly Constrained Batch Reinforcement Learning »
Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Pratik Chaudhari · Alexander Smola -
2020 : Panel Discussion & Closing »
Yejin Choi · Alexei Efros · Chelsea Finn · Kristen Grauman · Quoc V Le · Yann LeCun · Ruslan Salakhutdinov · Eric Xing -
2020 Workshop: Self-Supervised Learning -- Theory and Practice »
Pengtao Xie · Shanghang Zhang · Pulkit Agrawal · Ishan Misra · Cynthia Rudin · Abdelrahman Mohamed · Wenzhen Yuan · Barret Zoph · Laurens van der Maaten · Xingyi Yang · Eric Xing -
2020 Poster: Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation »
Rasool Fakoor · Jonas Mueller · Nick Erickson · Pratik Chaudhari · Alexander Smola -
2020 Poster: Regularizing Black-box Models for Improved Interpretability »
Gregory Plumb · Maruan Al-Shedivat · Ángel Alexander Cabrera · Adam Perer · Eric Xing · Ameet Talwalkar -
2020 Poster: AutoSync: Learning to Synchronize for Data-Parallel Distributed Deep Learning »
Hao Zhang · Yuan Li · Zhijie Deng · Xiaodan Liang · Lawrence Carin · Eric Xing -
2020 Poster: Improving GAN Training with Probability Ratio Clipping and Sample Reweighting »
Yue Wu · Pan Zhou · Andrew Wilson · Eric Xing · Zhiting Hu -
2019 : Invited Talk - Alexander J. Smola - Sets and symmetries »
Alexander Smola -
2019 : Poster Presentations »
Rahul Mehta · Andrew Lampinen · Binghong Chen · Sergio Pascual-Diaz · Jordi Grau-Moya · Aldo Faisal · Jonathan Tompson · Yiren Lu · Khimya Khetarpal · Martin Klissarov · Pierre-Luc Bacon · Doina Precup · Thanard Kurutach · Aviv Tamar · Pieter Abbeel · Jinke He · Maximilian Igl · Shimon Whiteson · Wendelin Boehmer · Raphaël Marinier · Olivier Pietquin · Karol Hausman · Sergey Levine · Chelsea Finn · Tianhe Yu · Lisa Lee · Benjamin Eysenbach · Emilio Parisotto · Eric Xing · Ruslan Salakhutdinov · Hongyu Ren · Anima Anandkumar · Deepak Pathak · Christopher Lu · Trevor Darrell · Alexei Efros · Phillip Isola · Feng Liu · Bo Han · Gang Niu · Masashi Sugiyama · Saurabh Kumar · Janith Petangoda · Johan Ferret · James McClelland · Kara Liu · Animesh Garg · Robert Lange -
2019 Workshop: Learning with Rich Experience: Integration of Learning Paradigms »
Zhiting Hu · Andrew Wilson · Chelsea Finn · Lisa Lee · Taylor Berg-Kirkpatrick · Ruslan Salakhutdinov · Eric Xing -
2019 Poster: Learning Robust Global Representations by Penalizing Local Predictive Power »
Haohan Wang · Songwei Ge · Zachary Lipton · Eric Xing -
2019 Poster: Learning Data Manipulation for Augmentation and Weighting »
Zhiting Hu · Bowen Tan · Russ Salakhutdinov · Tom Mitchell · Eric Xing -
2019 Poster: Learning Sample-Specific Models with Low-Rank Personalized Regression »
Ben Lengerich · Bryon Aragam · Eric Xing -
2018 Poster: The Sample Complexity of Semi-Supervised Learning with Nonparametric Mixture Models »
Chen Dan · Liu Leqi · Bryon Aragam · Pradeep Ravikumar · Eric Xing -
2018 Poster: Symbolic Graph Reasoning Meets Convolutions »
Xiaodan Liang · Zhiting Hu · Hao Zhang · Liang Lin · Eric Xing -
2018 Poster: Near-Optimal Policies for Dynamic Multinomial Logit Assortment Selection Models »
Yining Wang · Xi Chen · Yuan Zhou -
2018 Poster: DAGs with NO TEARS: Continuous Optimization for Structure Learning »
Xun Zheng · Bryon Aragam · Pradeep Ravikumar · Eric Xing -
2018 Spotlight: DAGs with NO TEARS: Continuous Optimization for Structure Learning »
Xun Zheng · Bryon Aragam · Pradeep Ravikumar · Eric Xing -
2018 Poster: Learning Pipelines with Limited Data and Domain Knowledge: A Study in Parsing Physics Problems »
Mrinmaya Sachan · Kumar Avinava Dubey · Tom Mitchell · Dan Roth · Eric Xing -
2018 Poster: Deep Generative Models with Learnable Knowledge Constraints »
Zhiting Hu · Zichao Yang · Russ Salakhutdinov · LIANHUI Qin · Xiaodan Liang · Haoye Dong · Eric Xing -
2018 Poster: Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation »
Yuan Li · Xiaodan Liang · Zhiting Hu · Eric Xing -
2018 Poster: Neural Architecture Search with Bayesian Optimisation and Optimal Transport »
Kirthevasan Kandasamy · Willie Neiswanger · Jeff Schneider · Barnabas Poczos · Eric Xing -
2018 Spotlight: Neural Architecture Search with Bayesian Optimisation and Optimal Transport »
Kirthevasan Kandasamy · Willie Neiswanger · Jeff Schneider · Barnabas Poczos · Eric Xing -
2018 Poster: Unsupervised Text Style Transfer using Language Models as Discriminators »
Zichao Yang · Zhiting Hu · Chris Dyer · Eric Xing · Taylor Berg-Kirkpatrick -
2017 : TBA11 »
Alexander Smola -
2017 Oral: Deep Sets »
Manzil Zaheer · Satwik Kottur · Siamak Ravanbakhsh · Barnabas Poczos · Ruslan Salakhutdinov · Alexander Smola -
2017 Poster: Deep Sets »
Manzil Zaheer · Satwik Kottur · Siamak Ravanbakhsh · Barnabas Poczos · Ruslan Salakhutdinov · Alexander Smola -
2017 Poster: Structured Generative Adversarial Networks »
Zhijie Deng · Hao Zhang · Xiaodan Liang · Luona Yang · Shizhen Xu · Jun Zhu · Eric Xing -
2016 : Eric Xing »
Eric Xing -
2016 Poster: Variance Reduction in Stochastic Gradient Langevin Dynamics »
Kumar Avinava Dubey · Sashank J. Reddi · Sinead Williamson · Barnabas Poczos · Alexander Smola · Eric Xing -
2016 Poster: On the Recursive Teaching Dimension of VC Classes »
Peter Chen · Xi Chen · Yu Cheng · Bo Tang -
2016 Poster: InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets »
Xi Chen · Peter Chen · Yan Duan · Rein Houthooft · John Schulman · Ilya Sutskever · Pieter Abbeel -
2016 Poster: VIME: Variational Information Maximizing Exploration »
Rein Houthooft · Xi Chen · Peter Chen · Yan Duan · John Schulman · Filip De Turck · Pieter Abbeel -
2016 Poster: Learning HMMs with Nonparametric Emissions via Spectral Decompositions of Continuous Matrices »
Kirthevasan Kandasamy · Maruan Al-Shedivat · Eric Xing -
2016 Poster: Proximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization »
Sashank J. Reddi · Suvrit Sra · Barnabas Poczos · Alexander Smola -
2016 Poster: Improving Variational Autoencoders with Inverse Autoregressive Flow »
Diederik Kingma · Tim Salimans · Rafal Jozefowicz · Peter Chen · Xi Chen · Ilya Sutskever · Max Welling -
2016 Poster: Stochastic Variational Deep Kernel Learning »
Andrew Wilson · Zhiting Hu · Russ Salakhutdinov · Eric Xing -
2016 Poster: Improved Techniques for Training GANs »
Tim Salimans · Ian Goodfellow · Wojciech Zaremba · Vicki Cheung · Alec Radford · Peter Chen · Xi Chen -
2015 : Scaling Machine Learning »
Alexander Smola -
2015 Workshop: Nonparametric Methods for Large Scale Representation Learning »
Andrew G Wilson · Alexander Smola · Eric Xing -
2015 Poster: Fast and Guaranteed Tensor Decomposition via Sketching »
Yining Wang · Hsiao-Yu Tung · Alexander Smola · Anima Anandkumar -
2015 Spotlight: Fast and Guaranteed Tensor Decomposition via Sketching »
Yining Wang · Hsiao-Yu Tung · Alexander Smola · Anima Anandkumar -
2015 Poster: On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants »
Sashank J. Reddi · Ahmed Hefny · Suvrit Sra · Barnabas Poczos · Alexander Smola -
2015 Poster: The Human Kernel »
Andrew Wilson · Christoph Dann · Chris Lucas · Eric Xing -
2015 Spotlight: The Human Kernel »
Andrew Wilson · Christoph Dann · Chris Lucas · Eric Xing -
2014 Workshop: Modern Nonparametrics 3: Automating the Learning Pipeline »
Eric Xing · Mladen Kolar · Arthur Gretton · Samory Kpotufe · Han Liu · Zoltán Szabó · Alan Yuille · Andrew G Wilson · Ryan Tibshirani · Sasha Rakhlin · Damian Kozbur · Bharath Sriperumbudur · David Lopez-Paz · Kirthevasan Kandasamy · Francesco Orabona · Andreas Damianou · Wacha Bounliphone · Yanshuai Cao · Arijit Das · Yingzhen Yang · Giulia DeSalvo · Dmitry Storcheus · Roberto Valerio -
2014 Workshop: Modern Machine Learning and Natural Language Processing »
Ankur P Parikh · Avneesh Saluja · Chris Dyer · Eric Xing -
2014 Poster: Communication Efficient Distributed Machine Learning with the Parameter Server »
Mu Li · David G Andersen · Alexander Smola · Kai Yu -
2014 Poster: On Model Parallelization and Scheduling Strategies for Distributed Machine Learning »
Seunghak Lee · Jin Kyu Kim · Xun Zheng · Qirong Ho · Garth Gibson · Eric Xing -
2014 Poster: Spectral Methods meet EM: A Provably Optimal Algorithm for Crowdsourcing »
Yuchen Zhang · Xi Chen · Denny Zhou · Michael Jordan -
2014 Poster: Spectral Methods for Indian Buffet Process Inference »
Hsiao-Yu Tung · Alexander Smola -
2014 Spotlight: Spectral Methods meet EM: A Provably Optimal Algorithm for Crowdsourcing »
Yuchen Zhang · Xi Chen · Denny Zhou · Michael Jordan -
2014 Poster: Dependent nonparametric trees for dynamic hierarchical clustering »
Kumar Avinava Dubey · Qirong Ho · Sinead Williamson · Eric Xing -
2013 Workshop: Topic Models: Computation, Application, and Evaluation »
David Mimno · Amr Ahmed · Jordan Boyd-Graber · Ankur Moitra · Hanna Wallach · Alexander Smola · David Blei · Anima Anandkumar -
2013 Workshop: Randomized Methods for Machine Learning »
David Lopez-Paz · Quoc V Le · Alexander Smola -
2013 Workshop: Crowdsourcing: Theory, Algorithms and Applications »
Jennifer Wortman Vaughan · Greg Stoddard · Chien-Ju Ho · Adish Singla · Michael Bernstein · Devavrat Shah · Arpita Ghosh · Evgeniy Gabrilovich · Denny Zhou · Nikhil Devanur · Xi Chen · Alexander Ihler · Qiang Liu · Genevieve Patterson · Ashwinkumar Badanidiyuru Varadaraja · Hossein Azari Soufiani · Jacob Whitehill -
2013 Workshop: Modern Nonparametric Methods in Machine Learning »
Arthur Gretton · Mladen Kolar · Samory Kpotufe · John Lafferty · Han Liu · Bernhard Schölkopf · Alexander Smola · Rob Nowak · Mikhail Belkin · Lorenzo Rosasco · peter bickel · Yue Zhao -
2013 Poster: More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server »
Qirong Ho · James Cipar · Henggang Cui · Seunghak Lee · Jin Kyu Kim · Phillip B. Gibbons · Garth Gibson · Greg Ganger · Eric Xing -
2013 Oral: More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server »
Qirong Ho · James Cipar · Henggang Cui · Seunghak Lee · Jin Kyu Kim · Phillip B. Gibbons · Garth Gibson · Greg Ganger · Eric Xing -
2013 Poster: Restricting exchangeable nonparametric distributions »
Sinead Williamson · Steven MacEachern · Eric Xing -
2013 Spotlight: Restricting exchangeable nonparametric distributions »
Sinead Williamson · Steven MacEachern · Eric Xing -
2013 Poster: A Scalable Approach to Probabilistic Latent Space Inference of Large-Scale Networks »
Junming Yin · Qirong Ho · Eric Xing -
2013 Poster: Modeling Overlapping Communities with Node Popularities »
Prem Gopalan · Chong Wang · David Blei -
2012 Workshop: Confluence between Kernel Methods and Graphical Models »
Le Song · Arthur Gretton · Alexander Smola -
2012 Workshop: Spectral Algorithms for Latent Variable Models »
Ankur P Parikh · Le Song · Eric Xing -
2012 Poster: Monte Carlo Methods for Maximum Margin Supervised Topic Models »
Qixia Jiang · Jun Zhu · Maosong Sun · Eric Xing -
2012 Session: Oral Session 10 »
Alexander Smola -
2012 Poster: Learning Networks of Heterogeneous Influence »
Nan Du · Le Song · Alexander Smola · Ming Yuan -
2012 Poster: FastEx: Fast Clustering with Exponential Families »
Amr Ahmed · Sujith Ravi · Shravan M Narayanamurthy · Alexander Smola -
2012 Poster: On Triangular versus Edge Representations --- Towards Scalable Modeling of Networks »
Qirong Ho · Junming Yin · Eric Xing -
2012 Poster: Symmetric Correspondence Topic Models for Multilingual Text Analysis »
Kosuke Fukumasu · Koji Eguchi · Eric Xing -
2012 Spotlight: Symmetric Correspondence Topic Models for Multilingual Text Analysis »
Kosuke Fukumasu · Koji Eguchi · Eric Xing -
2012 Spotlight: Learning Networks of Heterogeneous Influence »
Nan Du · Le Song · Alexander Smola · Ming Yuan -
2012 Poster: Optimal Regularized Dual Averaging Methods for Stochastic Optimization »
Xi Chen · Qihang Lin · Javier Pena -
2012 Poster: Clustering by Nonnegative Matrix Factorization Using Graph Random Walk »
Zhirong Yang · Tele Hao · Onur Dikmen · Xi Chen · Erkki Oja -
2011 Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale »
Joseph E Gonzalez · Sameer Singh · Graham Taylor · James Bergstra · Alice Zheng · Misha Bilenko · Yucheng Low · Yoshua Bengio · Michael Franklin · Carlos Guestrin · Andrew McCallum · Alexander Smola · Michael Jordan · Sugato Basu -
2011 Poster: Infinite Latent SVM for Classification and Multi-task Learning »
Jun Zhu · Ning Chen · Eric Xing -
2011 Poster: Kernel Embeddings of Latent Tree Graphical Models »
Le Song · Ankur P Parikh · Eric Xing -
2011 Poster: Large-Scale Category Structure Aware Image Categorization »
Bin Zhao · Li Fei-Fei · Eric Xing -
2011 Tutorial: Graphical Models for the Internet »
Amr Ahmed · Alexander Smola -
2010 Workshop: Challenges of Data Visualization »
Barbara Hammer · Laurens van der Maaten · Fei Sha · Alexander Smola -
2010 Spotlight: Graph-Valued Regression »
Han Liu · Xi Chen · John Lafferty · Larry Wasserman -
2010 Poster: Multivariate Dyadic Regression Trees for Sparse Learning Problems »
Han Liu · Xi Chen -
2010 Poster: Large Margin Learning of Upstream Scene Understanding Models »
Jun Zhu · Li-Jia Li · Li Fei-Fei · Eric Xing -
2010 Poster: Graph-Valued Regression »
Han Liu · Xi Chen · John Lafferty · Larry Wasserman -
2010 Poster: Word Features for Latent Dirichlet Allocation »
James Petterson · Alexander Smola · Tiberio Caetano · Wray L Buntine · Shravan M Narayanamurthy -
2010 Poster: Predictive Subspace Learning for Multi-view Data: a Large Margin Approach »
Ning Chen · Jun Zhu · Eric Xing -
2010 Poster: Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification »
Li-Jia Li · Hao Su · Eric Xing · Li Fei-Fei -
2010 Poster: Adaptive Multi-Task Lasso: with Application to eQTL Detection »
Seunghak Lee · Jun Zhu · Eric Xing -
2010 Poster: Optimal Web-Scale Tiering as a Flow Problem »
Gilbert Leung · Novi Quadrianto · Alexander Smola · Kostas Tsioutsiouliklis -
2010 Poster: Multitask Learning without Label Correspondences »
Novi Quadrianto · Alexander Smola · Tiberio Caetano · S.V.N. Vishwanathan · James Petterson -
2010 Poster: Parallelized Stochastic Gradient Descent »
Martin A Zinkevich · Markus Weimer · Alexander Smola · Lihong Li -
2009 Workshop: Large-Scale Machine Learning: Parallelism and Massive Datasets »
Alexander Gray · Arthur Gretton · Alexander Smola · Joseph E Gonzalez · Carlos Guestrin -
2009 Poster: Heterogeneous multitask learning with joint sparsity constraints »
Xiaolin Yang · Seyoung Kim · Eric Xing -
2009 Poster: Nonparametric Greedy Algorithms for the Sparse Learning Problem »
Han Liu · Xi Chen -
2009 Poster: Time-Varying Dynamic Bayesian Networks »
Le Song · Mladen Kolar · Eric Xing -
2009 Poster: Slow Learners are Fast »
Martin A Zinkevich · Alexander Smola · John Langford -
2009 Spotlight: Time-Varying Dynamic Bayesian Networks »
Le Song · Mladen Kolar · Eric Xing -
2009 Poster: Distribution Matching for Transduction »
Novi Quadrianto · James Petterson · Alexander Smola -
2009 Poster: Sparsistent Learning of Varying-coefficient Models with Structural Changes »
Mladen Kolar · Le Song · Eric Xing -
2009 Spotlight: Sparsistent Learning of Varying-coefficient Models with Structural Changes »
Mladen Kolar · Le Song · Eric Xing -
2008 Workshop: Analyzing Graphs: Theory and Applications »
Edo M Airoldi · David Blei · Jake M Hofman · Tony Jebara · Eric Xing -
2008 Poster: Mixed Membership Stochastic Blockmodels »
Edo M Airoldi · David Blei · Stephen E Fienberg · Eric Xing -
2008 Poster: Kernelized Sorting »
Novi Quadrianto · Le Song · Alexander Smola -
2008 Poster: Kernel Measures of Independence for non-iid Data »
Xinhua Zhang · Le Song · Arthur Gretton · Alexander Smola -
2008 Spotlight: Kernelized Sorting »
Novi Quadrianto · Le Song · Alexander Smola -
2008 Spotlight: Kernel Measures of Independence for non-iid Data »
Xinhua Zhang · Le Song · Arthur Gretton · Alexander Smola -
2008 Spotlight: Mixed Membership Stochastic Blockmodels »
Edo M Airoldi · David Blei · Stephen E Fienberg · Eric Xing -
2008 Poster: Partially Observed Maximum Entropy Discrimination Markov Networks »
Jun Zhu · Eric Xing · Bo Zhang -
2008 Poster: Tighter Bounds for Structured Estimation »
Olivier Chapelle · Chuong B Do · Quoc V Le · Alexander Smola · Choon Hui Teo -
2008 Poster: Robust Near-Isometric Matching via Structured Learning of Graphical Models »
Julian J McAuley · Tiberio Caetano · Alexander Smola -
2007 Workshop: Representations and Inference on Probability Distributions »
Kenji Fukumizu · Arthur Gretton · Alexander Smola -
2007 Workshop: Statistical Network Models »
Kevin Murphy · Lise Getoor · Eric Xing · Raphael Gottardo -
2007 Poster: Convex Learning with Invariances »
Choon Hui Teo · Amir Globerson · Sam T Roweis · Alexander Smola -
2007 Spotlight: A Kernel Statistical Test of Independence »
Arthur Gretton · Kenji Fukumizu · Choon Hui Teo · Le Song · Bernhard Schölkopf · Alexander Smola -
2007 Spotlight: Bundle Methods for Machine Learning »
Alexander Smola · Vishwanathan S V N · Quoc V Le -
2007 Poster: COFI RANK - Maximum Margin Matrix Factorization for Collaborative Ranking »
Markus Weimer · Alexandros Karatzoglou · Quoc V Le · Alexander Smola -
2007 Oral: Colored Maximum Variance Unfolding »
Le Song · Alexander Smola · Karsten Borgwardt · Arthur Gretton -
2007 Poster: Colored Maximum Variance Unfolding »
Le Song · Alexander Smola · Karsten Borgwardt · Arthur Gretton -
2007 Poster: A Kernel Statistical Test of Independence »
Arthur Gretton · Kenji Fukumizu · Choon Hui Teo · Le Song · Bernhard Schölkopf · Alexander Smola -
2007 Poster: Bundle Methods for Machine Learning »
Alexander Smola · Vishwanathan S V N · Quoc V Le -
2007 Spotlight: COFI RANK - Maximum Margin Matrix Factorization for Collaborative Ranking »
Markus Weimer · Alexandros Karatzoglou · Quoc V Le · Alexander Smola -
2007 Demonstration: Elefant »
Kishor Gawande · Alexander Smola · Vishwanathan S V N · Li Cheng · Simon A Guenter -
2007 Spotlight: Convex Learning with Invariances »
Choon Hui Teo · Amir Globerson · Sam T Roweis · Alexander Smola -
2007 Poster: HM-BiTAM: Bilingual Topic Exploration, Word Alignment, and Translation »
Bing Zhao · Eric Xing -
2006 Poster: A Hidden Markov Dirichlet Process Model for Genetic Recombination in Open Ancestral Space »
KyungAh Sohn · Eric Xing -
2006 Talk: A Hidden Markov Dirichlet Process Model for Genetic Recombination in Open Ancestral Space »
KyungAh Sohn · Eric Xing -
2006 Poster: A Kernel Method for the Two-Sample-Problem »
Arthur Gretton · Karsten Borgwardt · Malte J Rasch · Bernhard Schölkopf · Alexander Smola -
2006 Poster: Correcting Sample Selection Bias by Unlabeled Data »
Jiayuan Huang · Alexander Smola · Arthur Gretton · Karsten Borgwardt · Bernhard Schölkopf -
2006 Spotlight: Correcting Sample Selection Bias by Unlabeled Data »
Jiayuan Huang · Alexander Smola · Arthur Gretton · Karsten Borgwardt · Bernhard Schölkopf -
2006 Talk: A Kernel Method for the Two-Sample-Problem »
Arthur Gretton · Karsten Borgwardt · Malte J Rasch · Bernhard Schölkopf · Alexander Smola