Timezone: »

Bayesian optimization explains human active search
Ali Borji · Laurent Itti

Thu Dec 05 07:00 PM -- 11:59 PM (PST) @ Harrah's Special Events Center, 2nd Floor

Many real-world problems have complicated objective functions. To optimize such functions, humans utilize sophisticated sequential decision-making strategies. Many optimization algorithms have also been developed for this same purpose, but how do they compare to humans in terms of both performance and behavior? We try to unravel the general underlying algorithm people may be using while searching for the maximum of an invisible 1D function. Subjects click on a blank screen and are shown the ordinate of the function at each clicked abscissa location. Their task is to find the function’s maximum in as few clicks as possible. Subjects win if they get close enough to the maximum location. Analysis over 23 non-maths undergraduates, optimizing 25 functions from different families, shows that humans outperform 24 well-known optimization algorithms. Bayesian Optimization based on Gaussian Processes, which exploit all the x values tried and all the f(x) values obtained so far to pick the next x, predicts human performance and searched locations better. In 6 follow-up controlled experiments over 76 subjects, covering interpolation, extrapolation, and optimization tasks, we further confirm that Gaussian Processes provide a general and unified theoretical account to explain passive and active function learning and search in humans.

Author Information

Ali Borji (University of Southern California (USC))
Laurent Itti (University of Southern California (USC))

More from the Same Authors