Timezone: »
Resource efficiency is key for making ideas practical. It is crucial in many tasks, ranging from large-scale learning ("big data'') to small-scale mobile devices. Understanding resource efficiency is also important for understanding of biological systems, from individual cells to complex learning systems, such as the human brain. The goal of this workshop is to improve our fundamental theoretical understanding and link between various applications of learning under constraints on the resources, such as computation, observations, communication, and memory. While the founding fathers of machine learning were mainly concerned with characterizing the sample complexity of learning (the observations resource) [VC74] it now gets realized that fundamental understanding of other resource requirements, such as computation, communication, and memory is equally important for further progress [BB11].
The problem of resource-efficient learning is multidimensional and we already see some parts of this puzzle being assembled. One question is the interplay between the requirements on different resources. Can we use more of one resource to save on a different resource? For example, the dependence between computation and observations requirements was studied in [SSS08,SSST12,SSB12]. Another question is online learning under various budget constraints [AKKS12,BKS13,CKS04,DSSS05,CBG06]. One example that Badanidiyuru et al. provide is dynamic pricing with limited supply, where we have a limited number of items to sell and on each successful sale transaction we lose one item. A related question of online learning under constraints on information acquisition was studied in [SBCA13], where the constraints could be computational (information acquisition required computation) or monetary. Yet another direction is adaptation of algorithms to the complexity of operation environment. Such adaptation can allow resource consumption to reflect the hardness of a situation being faced. An example of such adaptation in multiarmed bandits with side information was given in [SAL+11]. Another way of adaptation is interpolation between stochastic and adversarial environments. At the moment there are two prevailing formalisms for modeling the environment, stochastic and adversarial (also known as the average case'' and
the worst case''). But in reality the environment is often neither stochastic, nor adversarial, but something in between. It is, therefore, crucial to understand the intermediate regime. First steps in this direction were done in [BS12]. And, of course, one of the flagman problems nowadays is ``big data'', where the constraint shifts from the number of observations to computation. We strongly believe that there are deep connections between problems at various scales and with various resource constraints and there are basic principles of learning under resource constraints that are yet to be discovered. We invite researchers to share their practical challenges and theoretical insights on this problem.
One additional important direction is design of resource-dependent performance measures. In the past, algorithms were compared in terms of predictive accuracy (classification errors, AUC, F-measures, NDCG, etc.), yet there is a need to evaluate them with additional metrics related to resources, such as memory, CPU time, and even power. For example, reward per computation operation. This theme will also be discussed at the workshop.
References:
[AKKS12] Kareem Amin, Michael Kearns, Peter Key and Anton Schwaighofer. Budget Optimization for Sponsored Search: Censored Learning in MDPs. UAI 2012.
[BB11] Leon Bottou and Olivier Bousquet. The trade-offs of large scale learning. In Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright, editors, Optimization for Machine Learning. MIT Press, 2011.
[BKS13] Ashwinkumar Badanidiyuru, Robert Kleinberg and Aleksandrs Slivkins. Bandits with Knapsacks. FOCS, 2013.
[BS12] Sebastien Bubeck and Aleksandrs Slivkins. The best of both worlds: stochastic and adversarial bandits. COLT, 2012.
[CBG06] Nicolò Cesa-Bianchi and Claudio Gentile. Tracking the best hyperplane with a simple budget perceptron. COLT 2006.
[CKS04] Koby Crammer, Jaz Kandola and Yoram Singer. Online Classification on a Budget. NIPS 2003.
[DSSS05] Ofer Dekel, Shai Shalev-shwartz and Yoram Singer. The Forgetron: A kernel-based perceptron on a fixed budget. NIPS 2004.
[SAL+11] Yevgeny Seldin, Peter Auer, François Laviolette, John Shawe-Taylor, and Ronald Ortner. PAC-Bayesian Analysis of Contextual Bandits. NIPS, 2011.
[SBCA13] Yevgeny Seldin, Peter Bartlett, Koby Crammer, and Yasin Abbasi-Yadkori. Prediction with Limited Advice and Multiarmed Bandits with Paid Observations. 2013.
[SSB12] Shai Shalev-Shwartz and Aharon Birnbaum. Learning halfspaces with the zero-one loss: Time-accuracy trade-offs. NIPS, 2012.
[SSS08] Shai Shalev-Shwartz and Nathan Srebro. SVM Optimization: Inverse Dependence on Training Set Size. ICML, 2008.
[SSST12] Shai Shalev-Shwartz, Ohad Shamir, and Eran Tromer. Using more data to speed-up training time. AISTATS, 2012.
[VC74] Vladimir N. Vapnik and Alexey Ya. Chervonenkis. Theory of pattern recognition. Nauka, Moscow (in Russian), 1974. German translation: W.N.Wapnik, A.Ya.Tschervonenkis (1979), Theorie der Zeichenerkennug, Akademia, Berlin.
Author Information
Yevgeny Seldin (University of Copenhagen)
Yasin Abbasi Yadkori (Adobe Research)
Yacov Crammer (Technion)
Ralf Herbrich (Amazon)
Peter Bartlett (UC Berkeley)
More from the Same Authors
-
2022 Poster: Finite Sample Analysis Of Dynamic Regression Parameter Learning »
Mark Kozdoba · Edward Moroshko · Shie Mannor · Yacov Crammer -
2021 Poster: Near Optimal Policy Optimization via REPS »
Aldo Pacchiano · Jonathan N Lee · Peter Bartlett · Ofir Nachum -
2021 Poster: On the Theory of Reinforcement Learning with Once-per-Episode Feedback »
Niladri Chatterji · Aldo Pacchiano · Peter Bartlett · Michael Jordan -
2021 Invited Talk: Benign Overfitting »
Peter Bartlett -
2021 Poster: Adversarial Examples in Multi-Layer Random ReLU Networks »
Peter Bartlett · Sebastien Bubeck · Yeshwanth Cherapanamjeri -
2020 Poster: Model Selection in Contextual Stochastic Bandit Problems »
Aldo Pacchiano · My Phan · Yasin Abbasi Yadkori · Anup Rao · Julian Zimmert · Tor Lattimore · Csaba Szepesvari -
2020 Poster: Preference learning along multiple criteria: A game-theoretic perspective »
Kush Bhatia · Ashwin Pananjady · Peter Bartlett · Anca Dragan · Martin Wainwright -
2019 Poster: Thompson Sampling and Approximate Inference »
My Phan · Yasin Abbasi Yadkori · Justin Domke -
2019 Poster: Bootstrapping Upper Confidence Bound »
Botao Hao · Yasin Abbasi Yadkori · Zheng Wen · Guang Cheng -
2018 Workshop: NeurIPS 2018 Competition Track Day 2 »
Ralf Herbrich · Sergio Escalera -
2018 Workshop: NeurIPS 2018 Competition Track Day 1 »
Sergio Escalera · Ralf Herbrich -
2018 : Opening and Best Demo Award announcement »
Sergio Escalera · Ralf Herbrich -
2018 Poster: Adaptation to Easy Data in Prediction with Limited Advice »
Tobias Sommer Thune · Yevgeny Seldin -
2018 Poster: Gen-Oja: Simple & Efficient Algorithm for Streaming Generalized Eigenvector Computation »
Kush Bhatia · Aldo Pacchiano · Nicolas Flammarion · Peter Bartlett · Michael Jordan -
2018 Poster: Factored Bandits »
Julian Zimmert · Yevgeny Seldin -
2018 Poster: Horizon-Independent Minimax Linear Regression »
Alan Malek · Peter Bartlett -
2018 Poster: Efficient Loss-Based Decoding on Graphs for Extreme Classification »
Itay Evron · Edward Moroshko · Yacov Crammer -
2018 Poster: Scalar Posterior Sampling with Applications »
Georgios Theocharous · Zheng Wen · Yasin Abbasi Yadkori · Nikos Vlassis -
2017 : Yevgeny Seldin - A Strongly Quasiconvex PAC-Bayesian Bound »
Yevgeny Seldin -
2017 Poster: Near Minimax Optimal Players for the Finite-Time 3-Expert Prediction Problem »
Yasin Abbasi Yadkori · Peter Bartlett · Victor Gabillon -
2017 Poster: Rotting Bandits »
Nir Levine · Yacov Crammer · Shie Mannor -
2017 Poster: Conservative Contextual Linear Bandits »
Abbas Kazerouni · Mohammad Ghavamzadeh · Yasin Abbasi · Benjamin Van Roy -
2017 Poster: Spectrally-normalized margin bounds for neural networks »
Peter Bartlett · Dylan J Foster · Matus Telgarsky -
2017 Spotlight: Spectrally-normalized margin bounds for neural networks »
Peter Bartlett · Dylan J Foster · Matus Telgarsky -
2017 Poster: Alternating minimization for dictionary learning with random initialization »
Niladri Chatterji · Peter Bartlett -
2017 Poster: Acceleration and Averaging in Stochastic Descent Dynamics »
Walid Krichene · Peter Bartlett -
2017 Spotlight: Acceleration and Averaging in Stochastic Descent Dynamics »
Walid Krichene · Peter Bartlett -
2016 Poster: Adaptive Averaging in Accelerated Descent Dynamics »
Walid Krichene · Alexandre Bayen · Peter Bartlett -
2015 Workshop: Machine Learning From and For Adaptive User Technologies: From Active Learning & Experimentation to Optimization & Personalization »
Joseph Jay Williams · Yasin Abbasi Yadkori · Finale Doshi-Velez -
2015 Poster: Linear Multi-Resource Allocation with Semi-Bandit Feedback »
Tor Lattimore · Yacov Crammer · Csaba Szepesvari -
2015 Poster: Accelerated Mirror Descent in Continuous and Discrete Time »
Walid Krichene · Alexandre Bayen · Peter Bartlett -
2015 Spotlight: Accelerated Mirror Descent in Continuous and Discrete Time »
Walid Krichene · Alexandre Bayen · Peter Bartlett -
2015 Poster: Minimax Time Series Prediction »
Wouter Koolen · Alan Malek · Peter Bartlett · Yasin Abbasi Yadkori -
2014 Workshop: Large-scale reinforcement learning and Markov decision problems »
Benjamin Van Roy · Mohammad Ghavamzadeh · Peter Bartlett · Yasin Abbasi Yadkori · Ambuj Tewari -
2014 Poster: Learning Multiple Tasks in Parallel with a Shared Annotator »
Haim Cohen · Yacov Crammer -
2014 Poster: Large-Margin Convex Polytope Machine »
Alex Kantchelian · Michael C Tschantz · Ling Huang · Peter Bartlett · Anthony D Joseph · J. D. Tygar -
2014 Poster: Efficient Minimax Strategies for Square Loss Games »
Wouter M Koolen · Alan Malek · Peter Bartlett -
2013 Workshop: Probabilistic Models for Big Data »
Neil D Lawrence · Joaquin Quiñonero-Candela · Tianshi Gao · James Hensman · Zoubin Ghahramani · Max Welling · David Blei · Ralf Herbrich -
2013 Poster: PAC-Bayes-Empirical-Bernstein Inequality »
Ilya Tolstikhin · Yevgeny Seldin -
2013 Poster: How to Hedge an Option Against an Adversary: Black-Scholes Pricing is Minimax Optimal »
Jacob D Abernethy · Peter Bartlett · Rafael Frongillo · Andre Wibisono -
2013 Spotlight: How to Hedge an Option Against an Adversary: Black-Scholes Pricing is Minimax Optimal »
Jacob D Abernethy · Peter Bartlett · Rafael Frongillo · Andre Wibisono -
2013 Spotlight: PAC-Bayes-Empirical-Bernstein Inequality »
Ilya Tolstikhin · Yevgeny Seldin -
2013 Poster: Online Learning in Markov Decision Processes with Adversarially Chosen Transition Probability Distributions »
Yasin Abbasi Yadkori · Peter Bartlett · Varun Kanade · Yevgeny Seldin · Csaba Szepesvari -
2012 Workshop: Multi-Trade-offs in Machine Learning »
Yevgeny Seldin · Guy Lever · John Shawe-Taylor · Nicolò Cesa-Bianchi · Yacov Crammer · Francois Laviolette · Gabor Lugosi · Peter Bartlett -
2012 Demonstration: DIRTBIS - Distributed Real-Time Bayesian Inference Service »
Ralf Herbrich -
2012 Poster: Volume Regularization for Binary Classification »
Yacov Crammer · Tal Wagner -
2012 Spotlight: Volume Regularization for Binary Classification »
Yacov Crammer · Tal Wagner -
2012 Poster: Learning Multiple Tasks using Shared Hypotheses »
Yacov Crammer · Yishay Mansour -
2011 Workshop: New Frontiers in Model Order Selection »
Yevgeny Seldin · Yacov Crammer · Nicolò Cesa-Bianchi · Francois Laviolette · John Shawe-Taylor -
2011 Poster: Improved Algorithms for Linear Stochastic Bandits »
Yasin Abbasi Yadkori · David Pal · Csaba Szepesvari -
2011 Spotlight: Improved Algorithms for Linear Stochastic Bandits »
Yasin Abbasi Yadkori · David Pal · Csaba Szepesvari -
2011 Poster: PAC-Bayesian Analysis of Contextual Bandits »
Yevgeny Seldin · Peter Auer · Francois Laviolette · John Shawe-Taylor · Ronald Ortner -
2011 Session: Opening Remarks and Awards »
Terrence Sejnowski · Peter Bartlett · Fernando Pereira -
2010 Poster: Learning via Gaussian Herding »
Yacov Crammer · Daniel Lee -
2010 Poster: New Adaptive Algorithms for Online Classification »
Francesco Orabona · Yacov Crammer -
2009 Workshop: Advances in Ranking »
Shivani Agarwal · Chris J Burges · Yacov Crammer -
2009 Poster: Adaptive Regularization of Weight Vectors »
Yacov Crammer · Alex Kulesza · Mark Dredze -
2009 Poster: Information-theoretic lower bounds on the oracle complexity of convex optimization »
Alekh Agarwal · Peter Bartlett · Pradeep Ravikumar · Martin J Wainwright -
2009 Spotlight: Information-theoretic lower bounds on the oracle complexity of convex optimization »
Alekh Agarwal · Peter Bartlett · Pradeep Ravikumar · Martin J Wainwright -
2009 Spotlight: Adaptive Regularization of Weight Vectors »
Yacov Crammer · Alex Kulesza · Mark Dredze -
2008 Session: Oral session 6: Neural Coding »
Yacov Crammer -
2008 Poster: Exact Convex Confidence-Weighted Learning »
Yacov Crammer · Mark Dredze · Fernando Pereira -
2008 Spotlight: Exact Convex Confidence-Weighted Learning »
Yacov Crammer · Mark Dredze · Fernando Pereira -
2007 Workshop: Machine Learning and Games (MALAGA): Open Directions in Applying Machine Learning to Games »
Joaquin Quiñonero-Candela · Thore K Graepel · Ralf Herbrich -
2007 Oral: Adaptive Online Gradient Descent »
Peter Bartlett · Elad Hazan · Sasha Rakhlin -
2007 Poster: TrueSkill Through Time: Revisiting the History of Chess »
Pierre Dangauthier · Ralf Herbrich · Tom Minka · Thore K Graepel -
2007 Poster: Adaptive Online Gradient Descent »
Peter Bartlett · Elad Hazan · Sasha Rakhlin -
2007 Spotlight: TrueSkill Through Time: Revisiting the History of Chess »
Pierre Dangauthier · Ralf Herbrich · Tom Minka · Thore K Graepel -
2007 Demonstration: Learning To Race by Model-Based Reinforcement Learning with Adaptive Abstraction »
Thore K Graepel · Phil A Trelford · Ralf Herbrich · Mykel J Kochenderfer -
2007 Poster: Optimistic Linear Programming gives Logarithmic Regret for Irreducible MDPs »
Ambuj Tewari · Peter Bartlett -
2007 Poster: Learning Bounds for Domain Adaptation »
John Blitzer · Yacov Crammer · Alex Kulesza · Fernando Pereira · Jennifer Wortman Vaughan -
2006 Poster: Shifting, One-Inclusion Mistake Bounds and Tight Multiclass Expected Risk Bounds »
Benjamin Rubinstein · Peter Bartlett · J. Hyam Rubinstein -
2006 Poster: Learning from Multiple Sources »
Yacov Crammer · Michael Kearns · Jennifer Wortman Vaughan -
2006 Poster: Sample Complexity of Policy Search with Known Dynamics »
Peter Bartlett · Ambuj Tewari -
2006 Poster: Information Bottleneck for Non Co-Occurrence Data »
Yevgeny Seldin · Noam Slonim · Naftali Tishby -
2006 Poster: TrueSkill: A Bayesian Skill Rating System »
Ralf Herbrich · Tom Minka · Thore K Graepel -
2006 Poster: Analysis of Representations for Domain Adaptation »
John Blitzer · Shai Ben-David · Yacov Crammer · Fernando Pereira -
2006 Talk: TrueSkill: A Bayesian Skill Rating System »
Ralf Herbrich · Tom Minka · Thore K Graepel -
2006 Poster: AdaBoost is Consistent »
Peter Bartlett · Mikhail Traskin