Timezone: »
Machine learning open source software (MLOSS) is one of the cornerstones of open science and reproducible research. Along with open access and open data, it enables free reuse and extension of current developments in machine learning. The mloss.org site exists to support a community creating a comprehensive open source machine learning environment, mainly by promoting new software implementations. This workshop aims to enhance the environment by fostering collaboration with the goal of creating tools that work with one another. Far from requiring integration into a single package, we believe that this kind of interoperability can also be achieved in a collaborative manner, which is especially suited to open source software development practices.
The workshop is aimed at all machine learning researchers who wish to have their algorithms and implementations included as a part of the greater open source machine learning environment. Continuing the tradition of well received workshops on MLOSS at NIPS 2006, NIPS 2008 and ICML 2010, we will have a workshop that is a mix of invited speakers, contributed talks and demos as well as a discussion session. For 2013, we focus on workflows and pipelines. Many algorithms and tools have reached a level of maturity which allows them to be reused and integrated into larger systems.
Author Information
Antti Honkela (University of Helsinki)
Cheng Soon Ong (NICTA, Melbourne)
More from the Same Authors
-
2021 : Differentially Private Hamiltonian Monte Carlo »
Ossi Räisä · Antti Koskela · Antti Honkela -
2021 : Tight Accounting in the Shuffle Model of Differential Privacy »
Antti Koskela · Mikko Heikkilä · Antti Honkela -
2022 : Individual Privacy Accounting with Gaussian Differential Privacy »
Antti Koskela · Marlon Tobaben · Antti Honkela -
2022 : Noise-Aware Statistical Inference with Differentially Private Synthetic Data »
Ossi Räisä · Joonas Jälkö · Antti Honkela · Samuel Kaski -
2021 Workshop: Privacy in Machine Learning (PriML) 2021 »
Yu-Xiang Wang · Borja Balle · Giovanni Cherubin · Kamalika Chaudhuri · Antti Honkela · Jonathan Lebensold · Casey Meehan · Mi Jung Park · Adrian Weller · Yuqing Zhu -
2020 Workshop: Privacy Preserving Machine Learning - PriML and PPML Joint Edition »
Borja Balle · James Bell · Aurélien Bellet · Kamalika Chaudhuri · Adria Gascon · Antti Honkela · Antti Koskela · Casey Meehan · Olga Ohrimenko · Mi Jung Park · Mariana Raykova · Mary Anne Smart · Yu-Xiang Wang · Adrian Weller -
2019 Workshop: Privacy in Machine Learning (PriML) »
Borja Balle · Kamalika Chaudhuri · Antti Honkela · Antti Koskela · Casey Meehan · Mi Jung Park · Mary Anne Smart · Mary Anne Smart · Adrian Weller -
2019 Poster: Differentially Private Markov Chain Monte Carlo »
Mikko Heikkilä · Joonas Jälkö · Onur Dikmen · Antti Honkela -
2019 Spotlight: Differentially Private Markov Chain Monte Carlo »
Mikko Heikkilä · Joonas Jälkö · Onur Dikmen · Antti Honkela -
2018 Workshop: Machine Learning Open Source Software 2018: Sustainable communities »
Heiko Strathmann · Viktor Gal · Ryan Curtin · Antti Honkela · Sergey Lisitsyn · Cheng Soon Ong -
2017 : Invited talk: Differential privacy and Bayesian learning »
Antti Honkela -
2017 Poster: Differentially private Bayesian learning on distributed data »
Mikko Heikkilä · Eemil Lagerspetz · Samuel Kaski · Kana Shimizu · Sasu Tarkoma · Antti Honkela -
2015 : Genome-wide modelling of transcription kinetics reveals patterns of RNA production delays »
Antti Honkela -
2011 Poster: Contextual Gaussian Process Bandit Optimization »
Andreas Krause · Cheng Soon Ong -
2010 Workshop: New Directions in Multiple Kernel Learning »
Marius Kloft · Ulrich Rueckert · Cheng Soon Ong · Alain Rakotomamonjy · Soeren Sonnenburg · Francis Bach -
2010 Demonstration: mldata.org - machine learning data and benchmark »
Cheng Soon Ong -
2008 Workshop: Machine Learning Open Source Software »
Soeren Sonnenburg · Mikio L Braun · Cheng Soon Ong