Timezone: »
Recent experiments have demonstrated that humans and animals typically reason probabilistically about their environment. This ability requires a neural code that represents probability distributions and neural circuits that are capable of implementing the operations of probabilistic inference. The proposed probabilistic population coding (PPC) framework provides a statistically efficient neural representation of probability distributions that is both broadly consistent with physiological measurements and capable of implementing some of the basic operations of probabilistic inference in a biologically plausible way. However, these experiments and the corresponding neural models have largely focused on simple (tractable) probabilistic computations such as cue combination, coordinate transformations, and decision making. As a result it remains unclear how to generalize this framework to more complex probabilistic computations. Here we address this short coming by showing that a very general approximate inference algorithm known as Variational Bayesian Expectation Maximization can be implemented within the linear PPC framework. We apply this approach to a generic problem faced by any given layer of cortex, namely the identification of latent causes of complex mixtures of spikes. We identify a formal equivalent between this spike pattern demixing problem and topic models used for document classification, in particular Latent Dirichlet Allocation (LDA). We then construct a neural network implementation of variational inference and learning for LDA that utilizes a linear PPC. This network relies critically on two non-linear operations: divisive normalization and super-linear facilitation, both of which are ubiquitously observed in neural circuits. We also demonstrate how online learning can be achieved using a variation of Hebb’s rule and describe an extesion of this work which allows us to deal with time varying and correlated latent causes.
Author Information
Jeff Beck
Katherine Heller (Google)
Alexandre Pouget (University of Rochester)
Related Events (a corresponding poster, oral, or spotlight)
-
2012 Spotlight: Complex Inference in Neural Circuits with Probabilistic Population Codes and Topic Models »
Thu. Dec 6th 06:10 -- 06:14 PM Room Harveys Convention Center Floor, CC
More from the Same Authors
-
2021 : Maintaining fairness across distribution shifts: do we have viable solutions for real-world applications? »
Jessica Schrouff · Natalie Harris · Sanmi Koyejo · Ibrahim Alabdulmohsin · Eva Schnider · Diana Mincu · Christina Chen · Awa Dieng · Yuan Liu · Vivek Natarajan · Katherine Heller · Alexander D'Amour -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Berk Ustun · Chirag Nagpal · Katherine Heller -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 Poster: Diagnosing failures of fairness transfer across distribution shift in real-world medical settings »
Jessica Schrouff · Natalie Harris · Sanmi Koyejo · Ibrahim Alabdulmohsin · Eva Schnider · Krista Opsahl-Ong · Alexander Brown · Subhrajit Roy · Diana Mincu · Christina Chen · Awa Dieng · Yuan Liu · Vivek Natarajan · Alan Karthikesalingam · Katherine Heller · Silvia Chiappa · Alexander D'Amour -
2020 Workshop: Machine Learning for Mobile Health »
Joseph Futoma · Walter Dempsey · Katherine Heller · Yian Ma · Nicholas Foti · Marianne Njifon · Kelly Zhang · Jieru Shi -
2020 Symposium: COVID-19 Symposium Day 2 »
Andrew Beam · Tristan Naumann · Katherine Heller · Elaine Nsoesie -
2020 Symposium: COVID-19 Symposium Day 1 »
Andrew Beam · Tristan Naumann · Katherine Heller · Elaine Nsoesie -
2019 Poster: Reconciling meta-learning and continual learning with online mixtures of tasks »
Ghassen Jerfel · Erin Grant · Tom Griffiths · Katherine Heller -
2019 Spotlight: Reconciling meta-learning and continual learning with online mixtures of tasks »
Ghassen Jerfel · Erin Grant · Tom Griffiths · Katherine Heller -
2018 : Katherine Heller »
Katherine Heller -
2017 : Panel: On the Foundations and Future of Approximate Inference »
David Blei · Zoubin Ghahramani · Katherine Heller · Tim Salimans · Max Welling · Matthew D. Hoffman -
2017 Poster: An inner-loop free solution to inverse problems using deep neural networks »
Kai Fan · Qi Wei · Lawrence Carin · Katherine Heller -
2015 Poster: Parallelizing MCMC with Random Partition Trees »
Xiangyu Wang · Fangjian Guo · Katherine Heller · David B Dunson -
2015 Poster: Fast Second Order Stochastic Backpropagation for Variational Inference »
Kai Fan · Ziteng Wang · Jeff Beck · James Kwok · Katherine Heller -
2012 Poster: Modelling Reciprocating Relationships with Hawkes processes »
Charles Blundell · Katherine Heller · Jeff Beck -
2012 Session: Oral Session 7 »
Katherine Heller -
2012 Spotlight: Modelling Reciprocating Relationships with Hawkes processes »
Charles Blundell · Katherine Heller · Jeff Beck -
2011 Poster: Testing a Bayesian Measure of Representativeness Using a Large Image Database »
Joshua T Abbott · Katherine Heller · Zoubin Ghahramani · Tom Griffiths -
2011 Session: Oral Session 7 »
Katherine Heller -
2010 Session: Spotlights Session 9 »
Katherine Heller -
2010 Session: Oral Session 11 »
Katherine Heller -
2009 Workshop: Applications for Topic Models: Text and Beyond »
David Blei · Jordan Boyd-Graber · Jonathan Chang · Katherine Heller · Hanna Wallach -
2009 Poster: Hierarchical Learning of Dimensional Biases in Human Categorization »
Katherine Heller · Adam Sanborn · Nick Chater -
2009 Spotlight: Hierarchical Learning of Dimensional Biases in Human Categorization »
Katherine Heller · Adam Sanborn · Nick Chater -
2008 Poster: Bayesian Exponential Family PCA »
Shakir Mohamed · Katherine Heller · Zoubin Ghahramani -
2008 Spotlight: Bayesian Exponential Family PCA »
Shakir Mohamed · Katherine Heller · Zoubin Ghahramani