Timezone: »
Demonstration
GraphLab: A Framework For Machine Learning in the Cloud
Yucheng Low · Haijie Gu · Carlos Guestrin
Wed Dec 05 07:00 PM -- 11:59 PM (PST) @ Harrah's Special Events Center, 2nd Floor -Tahoe A & B
Event URL: http://graphlab.org »
GraphLab is a graph-based abstraction targeted at solving large scale Machine Learning and data-mining tasks. Our distributed GraphLab implementation scales graphs with billions of vertices and edges easily and outperforms other systems and abstractions by orders of magnitudes. We have implemented a number of toolkits on top of GraphLab ranging from classical graph analytics tasks to collaborative filtering, probabilistic inference and clustering algorithms.
All code is open source and is available at http://graphlab.org/
Author Information
Yucheng Low (Apple)
Haijie Gu (Carnegie Mellon University)
Carlos Guestrin (Apple & University of Washington)
More from the Same Authors
-
2018 Poster: Learning to Optimize Tensor Programs »
Tianqi Chen · Lianmin Zheng · Eddie Yan · Ziheng Jiang · Thierry Moreau · Luis Ceze · Carlos Guestrin · Arvind Krishnamurthy -
2018 Spotlight: Learning to Optimize Tensor Programs »
Tianqi Chen · Lianmin Zheng · Eddie Yan · Ziheng Jiang · Thierry Moreau · Luis Ceze · Carlos Guestrin · Arvind Krishnamurthy -
2018 Poster: Training Deep Models Faster with Robust, Approximate Importance Sampling »
Tyler Johnson · Carlos Guestrin -
2016 : Invited talk, Carlos Guestrin »
Carlos Guestrin -
2016 Poster: Unified Methods for Exploiting Piecewise Linear Structure in Convex Optimization »
Tyler Johnson · Carlos Guestrin -
2014 Poster: Divide-and-Conquer Learning by Anchoring a Conical Hull »
Tianyi Zhou · Jeffrey A Bilmes · Carlos Guestrin -
2013 Workshop: Big Learning : Advances in Algorithms and Data Management »
Xinghao Pan · Haijie Gu · Joseph Gonzalez · Sameer Singh · Yucheng Low · Joseph Hellerstein · Derek G Murray · Raghu Ramakrishnan · Michael Jordan · Christopher RĂ© -
2012 Workshop: Big Learning : Algorithms, Systems, and Tools »
Sameer Singh · John Duchi · Yucheng Low · Joseph E Gonzalez -
2011 Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale »
Joseph E Gonzalez · Sameer Singh · Graham Taylor · James Bergstra · Alice Zheng · Misha Bilenko · Yucheng Low · Yoshua Bengio · Michael Franklin · Carlos Guestrin · Andrew McCallum · Alexander Smola · Michael Jordan · Sugato Basu -
2011 Poster: Linear Submodular Bandits and their Application to Diversified Retrieval »
Yisong Yue · Carlos Guestrin -
2010 Poster: Evidence-Specific Structures for Rich Tractable CRFs »
Anton Chechetka · Carlos Guestrin -
2010 Poster: Inference with Multivariate Heavy-Tails in Linear Models »
Danny Bickson · Carlos Guestrin -
2009 Workshop: Learning with Orderings »
Tiberio Caetano · Carlos Guestrin · Jonathan Huang · Risi Kondor · Guy Lebanon · Marina Meila -
2009 Workshop: Large-Scale Machine Learning: Parallelism and Massive Datasets »
Alexander Gray · Arthur Gretton · Alexander Smola · Joseph E Gonzalez · Carlos Guestrin -
2009 Poster: Riffled Independence for Ranked Data »
Jonathan Huang · Carlos Guestrin -
2009 Spotlight: Riffled Independence for Ranked Data »
Jonathan Huang · Carlos Guestrin -
2007 Oral: Efficient Inference forDistributions on Permutations »
Jonathan Huang · Carlos Guestrin · Leonidas Guibas -
2007 Poster: Efficient Inference forDistributions on Permutations »
Jonathan Huang · Carlos Guestrin · Leonidas Guibas -
2007 Spotlight: Selecting Observations against Adversarial Objectives »
Andreas Krause · H. Brendan McMahan · Carlos Guestrin · Anupam Gupta -
2007 Poster: Selecting Observations against Adversarial Objectives »
Andreas Krause · H. Brendan McMahan · Carlos Guestrin · Anupam Gupta -
2007 Poster: Efficient Principled Learning of Thin Junction Trees »
Anton Chechetka · Carlos Guestrin -
2006 Poster: Distributed Inference in Dynamical Systems »
Stanislav Funiak · Carlos Guestrin · Mark A Paskin · Rahul Sukthankar